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DCHap: A divide-and-conquer haplotype
phasing algorithm for third-generation

sequences
Yanbo Li and Yu Lin

Abstract—The development of DNA sequencing technologies makes it possible to obtain reads originated from both copies of a
chromosome (two parental chromosomes, or haplotypes) of a single individual. Reconstruction of both haplotypes (i.e. haplotype
phasing) plays a crucial role in genetic analysis and provides relationship information between genetic variation and disease
susceptibility. With the emerging third-generation sequencing technologies, most existing approaches for haplotype phasing suffer from
performance issues to handle long and error-prone reads. We develop a divide-and-conquer algorithm, DCHap, to phase haplotypes
using third-generation reads. We benchmark DCHap against three state-of-the-art phasing tools on both PacBio SMRT data and ONT
Nanopore data. The experimental results show that DCHap generates more accurate or comparable results (measured by the switch
errors) while being scalable for higher coverage and longer reads. DCHap is a fast and accurate algorithm for haplotype phasing using
third-generation sequencing data. As the third-generation sequencing platforms continue improving on their throughput and read
lengths, accurate and scalable tools like DCHap are important to improve haplotype phasing from the advances of sequencing
technologies. The source code is freely available at https://github.com/yanboANU/Haplotype-phasing.

Index Terms—haplotype phasing,third-generation sequencing, divide-and-conquer.

F

1 INTRODUCTION

THE human genome is diploid; each chromosome has
two copies: the maternal copy and the paternal copy.

These two copies are highly similar and also exhibit differ-
ent sites called variations. Single nucleotide polymorphisms
(SNPs) are the most common variations between these two
copies. The sequence of SNPs on a chromosome is usually
called a haplotype. Haplotype information is important for
genomics research, e.g., genetic variation is associated with
the susceptibility to a wide variety of common disease [1];
the relationship of haplotypes between different generations
is helpful to understand human history and evolution [2],
[3].

The problem of haplotype phasing is to obtain SNP
sequence on each chromosome from sequencing reads and
a reference genome [4]. The rapid development of se-
quencing technologies provides opportunities to reconstruct
haplotypes from sequencing reads. Since 2005, the next-
generation sequencing (NGS) technologies have offered
high-throughput, cost-effective sequencing platforms and
thus revolutionized the genomics studies. While NGS se-
quencing data is being collected in enormous amounts, it
still suffers from short lengths in resolving haplotypes: (1)
short reads are prone to misalignment due to repeats in
the genome, resulting in ambiguities for SNP calling, (2)
reads are too short to span over multiple SNPs, resulting
in discontinuity of reconstructed haplotypes. More recently,
the third-generation sequencing (TGS) technologies, such as
PacBio SMRT and ONT Nanopore, allow direct sequencing
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of single DNA molecules and generating long reads which
are orders of magnitude longer than NGS reads (e.g., Illu-
mina reads). Long TGS reads increase alignment confidence
and link distant SNPs, thus open new opportunities for
more complete and accurate haplotype phasing [5], [6], [7].

The problem of haplotype phasing is trivial when reads
are error-free. However, this problem becomes NP-hard
under most formulations for noisy reads [8], [9]. Therefore,
various heuristic algorithms have been proposed to attack
this problem. For example, FastHare sorts input reads by
their starting positions, iteratively recruits one read at a
time and greedily reconstructs two haplotypes [10]. Al-
though FastHare runs linearly with respect to the problem
input, it becomes inaccurate when dealing with inaccurate
reads [10]. ReFHap builds a graph of reads, assigns a
weight to a pair of reads based on their common SNPs and
finally builds haplotypes consistent with the max-cut in the
graph [11]. ReFHap scales quadratically with the number of
reads, and thus becomes impractical to handle datasets with
high read coverage. Several different dynamic programming
algorithms (including ProbHap [12], WhatsHap [13] and
others [14], [15]) have also been proposed to assemble the
haplotypes with efficient enumeration strategies. Moreover,
HapCUT and HapCUT2 are graph-based algorithms which
compute max-cuts in read-haplotype graphs and thus find
the corresponding haplotypes [5], [16]. These dynamic pro-
gramming or graph-based approaches largely improve the
accuracy of haplotype phasing, but still suffer from high
time complexity with respect to either the maximum cov-
erage [12], [13], [15] or the maximum number of SNPs in a
single read [5], [14], [16].

In this paper we propose a divide-and-conquer algo-
rithm, DCHap, which derives robust and accurate phas-
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ing results for third-generation sequencing data. Our al-
gorithm first identifies reliable regions and resolves the
corresponding short haplotype segments, then uses reads
to bridge these reliable segments to derive long haplotypes.
Experimental results show that our DCHap approach is
scalable to process high coverage error-prone long reads
and achieves comparable or better performance for both
simulated and real TGS data (including PacBio SMRT data
and ONT Nanopore data.)

2 METHODS

2.1 Problem Formulation

The problem addressed in this paper is to reconstruct two
haplotypes (H1 and H2) of an individual through sequenc-
ing reads. The common strategy is to align these reads
into a reference genome, remove non-SNPs columns and
encode heterozygous SNPs to build an input alignment
matrix M . Each row of the m-by-n matrix M represents
a read and each column represents a heterozygous SNP,
where m is the number of reads and n is the number of
SNPs. Each element M [i, j] in M is in the alphabet {0, 1,−},
where M [i, j] = 0/1/− means the read Ri contains the
major/minor/ambiguous allele at the j-th SNP position.
Therefore, the problem of haplotype phasing is to recon-
struct two haplotypes from the matrix M . As all columns
correspond to heterozygous SNPs, two reconstructed hap-
lotypes are both binary sequences and are complement to
each other.

If reads are error-free, it is trivial to perfectly bi-partition
rows of the matrix M into two groups such that every col-
umn in each group does not contain conflicting alleles (i.e., 0
vs 1) and the consensus sequences for two groups are natu-
rally two haplotypes. For example, if we only consider four
reads over four heterozygous SNPs, R1(‘111−’), R2(‘0001’),
R3(‘−001’) and R4(‘−110’), the perfect bi-partition is ({R1,
R4} and {R2, R3}) while two haplotypes H1 = 1110 and
H2 = 0001, respectively. However, this problem becomes
challenging for noisy NGS or TGS reads and various opti-
mization measures (such as Minimum Fragment Removal,
Minimum SNP Removal, Longest Haplotype Reconstruc-
tion [4] and Minimum Error Correction (MEC) [17]) have
been proposed to handle erroneous reads. However, this
problem is NP-hard under the above formulations for er-
roneous reads [8], [9]. In this paper, we focus on the most
widely-used measure, Minimum Error Correction (MEC),
i.e., haplotype phasing is to find two haplotypes H1 and H2

with the minimum number of errors to be corrected in order
to assign each read to either H1 or H2 perfectly. In other
words, MEC represents the minimum number of elements
in M that need to be flipped from 0 to 1 or vice versa to
derive the perfect bi-partition and the pair of haplotypes
H1 and H2. For example, if we consider the following four
reads over four heterozygous SNPs, R1(‘1100’), R2(‘0101’),
R3(‘0001’) and R4(‘1110’), the MEC is 2 as we need to flip
the third position in R1 and the second position in R2 to
make a perfect bi-partition ({R1, R4} and {R2, R3}) with
two haplotypes H1 = 1110 and H2 = 0001.

2.2 Observation and Motivation
Under the Minimum Error Correction (MEC) measure, there
are two naive and exponential-time algorithms to recon-
struct a pair of optimal haplotypes. Note the any pair of
haplotypes are two bit-complement binary strings and thus
only one optimal haplotype needs to be reconstructed.

The first naive approach is to enumerate all possible
binary haplotypes (2n possible haplotypes where n is the
number of SNPs) and to assign reads accordingly. The
optimal haplotype will be the one with the minimum MEC.
The second naive approach is to enumerate all possible
bi-partitions (2m possible partitions, m is the number of
reads) for reads. Once the reads bi-partitions are fixed, the
haplotype and its MEC can be inferred by consensus voting
at each SNP position accordingly. The optimal haplotype
with the minimum MEC can be derived after enumerating
all reads bi-partitions.

Previous algorithms for haplotype phasing improve
the enumeration behind these two naive algorithms. For
example, instead of enumerating all possible full-length
haplotypes or all bi-partitions of reads, dynamic program-
ming approaches either enumerate length-restricted binary
strings started at each column, where the enumeration
length is the maximum number of SNPs in a read [14],
or enumerate coverage-restricted reads bi-partitions at each
column, where only reads covering the current column are
considered to be partitioned [12], [13], [15].

As the global or local enumeration dominates the run-
ning time for existing algorithms, we would like to reduce
the number of enumerations to improve the speed. In fact,
in many genomic regions, the optimal haplotypes (or the
bi-partitions of reads) are non-ambiguous and thus enu-
meration may not be needed. For example in Fig. 1 (a)
columns 6-9, there are four reads containing non-ambiguous
SNPs for these columns: R5(‘1111’), R6(‘1111’), R7(‘0000’)
and R8(‘0000’). As ‘1111’ and ‘0000’ are bit-complement,
the optimal haplotype segments in this region are probably
‘1111’ and ‘0000’ while {R5, R6} and {R7, R8} are most
likely the corresponding bi-partition. If we can identify such
regions (similar to the sketches in [6]) in advance, it is
possible to speedup the enumeration process by fixing the
haplotype segments and the bi-partitions of reads in such re-
gions. Therefore, we design a divide-and-conquer algorithm
for our DCHap algorithm in the following three steps: (1)
identify reliable regions; (2) bridge reliable regions; (3) post-
processing. Refer to Fig. 1 for the pipeline of DCHap. We
will explain each step of DCHap in the following sections.

2.3 Identify Reliable Regions
The basic idea of identifying reliable regions is to find
consecutive SNPs regions resulting in corresponding hap-
lotype segments and bi-partition of the covering reads.
A fixed-length sliding window is used to scan the input
alignment matrix from left to right. For each window, if a
read contains only non-ambiguous alleles (i.e., only ‘0’ and
‘1’, without ‘−’) in a window, the binary segment of the
read in this window is called a candidate window segment.
A window is called reliable if two most frequent candidate
window segments are bit-complement. Two most frequent
candidate window segments of a reliable window are called
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Fig. 1. The pipeline of DCHap. (a) Take the alignment matrix as the input.
(b) Identify reliable regions using length-3 sliding windows. (c) Bridge
neighboring reliable regions by finding links with the minimum MEC. (d)
Post-process by using all reads to polish phased haplotypes.

window segments. For example in Fig. 1 (a), the first three
columns form a length-3 reliable window because two most
frequent candidate window segments (‘000’ and ‘111’) are
bit-complement 1. Therefore, ‘000’ and ‘111’ become the
window segments for this reliable window. Contiguous
reliable windows may be merged into reliable regions if the
corresponding window segments are consistent with respect
to their overlaps. For example, the Reliable Region 2 in
Fig. 1 (b) (columns 6-9) is derived by merging two length-
3 reliable windows covering columns 6-8 and columns 7-9,
respectively.

However, in certain genomic regions, especially with a
low coverage, reads may be all sampled from just one haplo-
type. In this case, only one dominant candidate window seg-
ment is observed for each window, resulting in no reliable
window in a long genomic region. To solve this issue, we
apply an additional rule to find more reliable windows. This
additional rule identifies more reliable windows where the
most frequent candidate window segment appears at least
twice and accounts for at least two thirds of all candidate
window segments. It is worth noting that DCHap applies
this additional rule only when no reliable window is found
in a long genomic region (i.e., a region covering at least 10
SNPs in our setting).

It is worth mentioning that most genomic regions are
reliable even for error-prone TGS reads. In two real datasets,
46x PacBio SMRT dataset [18] and 37x ONT Nanopore
dataset [19] from same individual NA12878, reliable regions
cover more than 90% of the whole genome and the phasing
accuracy of reliable regions is above 99.9% (when the win-
dow size = 3). Moreover, gaps between two neighboring
reliable regions are also very short (in average less than
one2, see Fig. 5 for the length distribution of two neigh-

1. Note that ‘--1’ and ‘---’ are ignored in counting candidate
window segments as they contain ambiguous alleles.

2. Note that the minimum gap length is 0 when two neighboring
reliable regions are next to each other (e.g., there is a gap of length 0
between two reliable regions covering positions 1-3 and positions 4-6,
respectively).

boring reliable regions for these two real datasets). Now we
move on to show how DCHap bridges the gaps between
reliable regions.

2.4 Bridge Reliable Regions
For reliable region i, there are a pair of bit-complement
segments, Si and S′i. For two neighboring reliable regions,
i and i + 1, DCHap needs to connect Si to either Si+1 or
S′i+1 and phase the gap alleles between reliable regions i
and (i+ 1) if it is possible.

For example, in Fig. 2 (top right), DCHap enumerates 32
possible links (5 binary bits) to bridge two reliable regions,
including two possible connections between two reliable
segments (1 binary bit) and four possible gap alleles (4
binary bits).

DCHap computes a MEC for each enumerated link with
respect to the reads spanning over the gap alleles and record
the link(s) with the minimum MEC. Three cases are summa-
rized in Fig. 2 (bottom) to interpret such link(s) to bridge two
reliable regions. Case (i) shows an ideal situation in which
there is only one link with the minimum MEC and thus
two reliable regions will be bridged. Case (ii) shows more
than one links achieve the minimum MEC and these links
only differ at local sites (site-ambiguous), thus DCHap will
bridge two reliable regions and just set ambitious symbols at
conflicting sites. For example, Fig. 2 (bottom middle) shows
that two links, S10000S

′
2 and S10010S

′
2, only differ at the

third gap site and thus S100-0S
′
2 will be the output. Case

(iii) shows more than one links achieve the minimum MEC
and these links differ not only at gap sites but also the
connection between segments (link-ambiguous), thus DCHap
will not bridge these two reliable regions to avoid possible
switch errors. For example, Fig. 2 (bottom right) shows
that two links, S10000S2 and S10011S

′
2, result in different

connection between segments (S1 to S2 v.s. S1 to S′2) and
thus S100 and 11S′2 will be the output.

Fig. 2. The process of bridging two neighboring reliable regions in
DCHap. Enumerate all possible ways (links) to bridge two reliable
regions, find link(s) with the minimum MEC and output the phased
haplotype segments.

Now we show how DCHap detects site-ambiguous and
link-ambiguous cases. Assume that L = {L1, L2, . . . , Lm}
is the set of m links with the same minimum MEC. Without
loss of generality, DCHap also binary encodes the choice of
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the segment in a link and now each link Li is represented by
a binary string. Two positions j1 and j2 are compatible with
respect to L if only one binary string (e.g., 01) or a pair of
bit-complement binary strings (e.g., 01 and 10) are observed
at positions j1 and j2 in L. For example, in Case (ii) of
Fig. 2, the first two gap positions are compatible (because
only 00 is observed) while the last two gap positions are
not compatible (because both 00 and 10 are observed). If
a position is not compatible with any other positions (e.g.,
the third gap position in Case (ii) of Fig. 2), this position
is site-ambiguous with respect to L and will be set as an
ambiguous allele in the output. Positions that are compatible
with each other form a compatible group. For example, the
first three positions and the last three positions of Case (iii)
in Fig. 2 form two compatible groups, respectively. Note that
each compatible group with at least two positions admits a
unique consensus segment. A link-ambiguous case appears
between two compatible groups and will break the link
between two reliable regions (e.g., a break between the first
three positions and the last three positions of Case (iii) in
Fig. 2).

As shown above, the problem of bridging reliable re-
gions is to identify all compatible groups from the link(s)
with the minimum MEC. DCHap checks pairwise compat-
ibility to find all compatible groups and thus reconstruct
consensus haplotypes when multiple links have the same
minimum MEC.

While the example in the Fig. 2 covers the case to
bridge two neighboring reliable regions, in fact, DCHap
may bridge multiple reliable regions at a time. Enumerat-
ing all possible links among reliable regions can be done
efficiently because reliable regions typically cover more than
90% of SNP sites (e.g., in both PacBio and ONT Nanpore real
data of NA12878) and gaps between neighboring reliable
regions are shown to be very short in most cases (refer to Fig.
5). In our experiments, we restrict the enumeration up to 16
binary bits and up to 32 SNP sites (including the SNPs in the
reliable regions). As of long gaps, DCHap will enumerate bi-
partitions of reads if the number of possible bi-partitions of
reads is smaller than the number of all possible binary links.

2.5 Post-Processing
In DCHap, reliable regions are reconstructed only by reads
covering consecutive non-ambiguous SNPs and reliable re-
gions are bridged only by reads spanning over the gaps. To
make use of all the reads and further polish the resulting
haplotypes (similar to ReFHap [11] and ProbHap [12]),
DCHap applies a post-processing step as follows:

Cj,0 = {i|(Ri ∈ A
⋂

Rij = 0)
⋃

(Ri ∈ B
⋂

Rij = 1)}

Cj,1 = {i|(Ri ∈ A
⋂

Rij = 1)
⋃

(Ri ∈ B
⋂

Rij = 0)}

hA
j = { 0 if |Cj,0| > |Cj,1|1if |Cj,0| < |Cj,1| − otherwise;

Ri is a read, Rij is the value of Ri at column j. A
and B are the bi-partition of reads by assigning reads to
current haplotype segments prior to post-processing. hA

j is
the haplotype at position j for the reads partition A. This
post-processing strategy performs well in low-coverage data

set, especially for phasing haplotype with extra-long and
error-prone ONT Nanopore reads [19].

3 RESULTS

3.1 Benchmarking Summary

Software tools: We benchmarked DCHap with three state-
of-the-art phasing tools: HapCUT2 [5], FastHare [10], and
WhatsHap [7], [13]. HapCUT2 and WhatsHap were down-
loaded from the author’s website; FastHare we tested was
implemented by [11]. ReFHap [11] and ProbHap [12] were
excluded in the benchmarking because they were shown
to suffer from time/memory issues when comparing to
HapCUT2 [5].
Datasets: We used three different types of long sequencing
reads: simulated reads (using PBSIM [20] to access the ro-
bustness against different error rates, read lengths and cov-
erages), real PacBio SMRT data [18] and real ONT Nanopore
data [19]. Two real datasets of PacBio SMRT and ONT
Nanopore are from the same individual NA12878 [18], [19],
for which we directly downloaded the alignment files and
combined them with a set of heterozygous SNPs to build
the input alignment matrix. Following the same procedure
in HapCUT2 [5], the set of heterozygous SNPs positions for
NA12878 is available from 1000 Genomes Project and the
trio-phased haplotypes for NA12878 from 1000 Genomes
Project [21] is set as the ground-truth.
Evaluation metrics: We used four metrics to evaluate the
performance. The switch error and mismatch error are com-
mon measures for evaluating the phasing accuracy [5],
[12]. A switch error indicates a phase discordant between
two adjacent phased segments (of length 2 or more) when
comparing with the ground-truth (e.g., there is a switch
error between third and fourth position in MMMFF, where
M and F represent the alleles on H1 and H2 respectively).
A mismatch error indicates a phase discordant with respect
to a single position (e.g, there is a mismatch error at third
position in MMFMM). Note that a switch error is more
serious than a mismatch error, because a switch error affects
the global haplotype structures while a mismatch error only
introduces certain local noise.

The AN50 evaluates the contiguity of assembled haplo-
type: it represents a value (a haplotype segment length in
base pair) such that half of all phased SNPs are in those
segments whose lengths longer than this value [22]. The
phasing rate measures the completeness, which is defined
as the number of SNPs in phased segments (of length two
or more), divided by the total number of SNPs [12].

3.2 Simulated Data

We use PBSIM [20] to simulate PacBio SMRT reads from
phased haplotypes for Chromosome 15 of NA12878 from
1000 Genomes Project [21]. A BAM file is derived by
aligning these simulated reads to the Human reference
genome hg19 using BWA-MEM [23]. In the preprocessing,
WhatsHap [7], [13] uses SAMtools [24] to index the above
BAM file while other software tools use ExtractHAIRS [5] to
derive the input alignment matrix from the above BAM file.

We perform extensive experiments to assess the perfor-
mance dependence on the coverage, read length and read
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Fig. 3. The phasing benchmark on simulated reads using PBSIM [20] with different coverage depths, read lengths and read error rates. (a) the
coverage varying from 10x to 40x when the average read error rate is 0.1 and the average read length is 10k. (b) the average read length varying
from 3k to 15k when the read average error rate is 0.1 and the coverage is 20x. (c) the average read error rate varying from 0.01 to 0.15 when the
coverage is 20x and the average read length is 10k.

error rate. For each parameter setting, 10 replicates are
produced and tested to derive the average result. Among
many parameter values tested, we show the following rep-
resentative settings:

• Varying the coverage: the coverage varying from 10x
to 40x when the average read error rate is 0.1 and the
average read length is 10k. Refer to Fig. 3 (a).

• Varying the read length: the average read length
varying from 3k to 15k when the error rate is 0.1
and the coverage is 20x. Refer to Fig. 3 (b).

• Varying the read error rate: the error rate varying
from 0.01 to 0.15 when the coverage is 20x and the
average read length is 10k. Refer to Fig. 3 (c).

Fig. 3 summarizes the phasing performance under the
various parameter settings. The first row of Fig. 3 shows the

running time3. FastHare and DCHap have a lower running
time comparing to HapCUT2 and WhatsHap, and they also
scale more efficiently with respect to the coverage, read
length and error rate.

While FastHare runs fast because of its greedy strategy,
DCHap benefits from the high percentage of reliable regions
(above 90% for all cases) and the short average gap length
(less than 2 for all cases) under various parameter combina-
tions.

The second row of Fig. 3 shows that DCHap always
achieves the lowest switch error rate, especially when the
read error rate increases. The third row of Fig. 3 indicates
that DCHap outperforms others with respect to the mis-
match errors. The bottom two rows of Fig. 3 shows that
WhatsHap achieves the highest phased rate and AN50 in
all cases, however, it also comes with a higher switch error

3. We have excluded the prepossessing time, i.e., indexing using
SAMtools [24] for WhatsHap [7], [13] and using ExtractHAIRS tool [5]
for other software tools.



6

10 20 30 40
0.0000

0.0001

0.0002

0.0003

0.0004

Sw
itc

h 
Er

ro
r R

at
e

7k 11k 15k
0.0000

0.0001

0.0002

0.0003

0.0004

DCHap (k = 2) DCHap (k = 3) DCHap (k = 4)

0.01 0.05 0.1 0.15
0.0000

0.0001

0.0002

0.0003

0.0004

10 20 30 40
0.0000

0.0001

0.0002

0.0003

0.0004

M
ism

at
ch

 E
rro

r R
at

e

7k 11k 15k
0.0000

0.0001

0.0002

0.0003

0.0004

0.01 0.05 0.1 0.15
0.0000

0.0001

0.0002

0.0003

0.0004

10 20 30 40

99.86

99.88

99.90

99.92

99.94

99.96

99.98

100.00

Ph
as

ed
 R

at
e 

(%
)

7k 11k 15k

99.86

99.88

99.90

99.92

99.94

99.96

99.98

100.00

0.01 0.05 0.1 0.15

99.86

99.88

99.90

99.92

99.94

99.96

99.98

100.00

10 20 30 40
Coverage

0.00

0.05

0.10

0.15

0.20

0.25

AN
50

(m
b)

(a) Varying the coverage

7k 11k 15k
Read Length

0.00

0.05

0.10

0.15

0.20

0.25

(b) Varying the read length

0.01 0.05 0.1 0.15
Read Error Rate

0.00

0.05

0.10

0.15

0.20

0.25

(c) Varying the read error rate

Fig. 4. Comparison on different lengths (k=2,3,4) of the sliding window in DCHap on simulated reads using PBSIM [20] with different coverage
depths, read lengths and read error rates. (a) the coverage varying from 10x to 40x when the average read error rate is 0.1 and the average read
length is 10k. (b) the average read length varying from 7k to 15k when the read average error rate is 0.1 and the coverage is 20x. (c) the average
read error rate varying from 0.01 to 0.15 when the coverage is 20x and the average read length is 10k.

and mismatch error rates. DCHap has comparable phased
rate and slightly shorter AN50 than HapCUT2 and FastHare
because DCHap avoids connecting ambiguous links which
may increase AN50 but also result in more switch errors.

In summary, although FastHare is fastest and WhatsHap
phases the most number of SNPs in the above simulations,
their phasing accuracy is still not satisfactory. DCHap and
HapCUT2 achieve more robust and accurate results, but
DCHap runs notably faster than HapCUT2 and the speedup
increases when the coverage increases or the read length
becomes longer in the third-generation sequencing data.

Choices of the sliding-window length in DCHap In the
above experiments, DCHap sets the sliding-window length
as 2. Now we vary the length of the sliding window from
2 to 4 in DCHap and summarize the results in the Figure 4.
The phasing results are stable for DCHap for different
window lengths. In general, the sliding window length is
a trade-off between the running time and accuracy; a longer
window length is preferred to handle more error-prone and

longer reads while a shorter window length is more suitable
to deal with less error-prone reads. By default, DCHap sets
the sliding window length as 2 for PacBio datasets and 3 for
Nanopore datasets, respectively.

3.3 Real PacBio SMRT Data

The PacBio SMRT reads from the individual NA12878 have
a median depth of 46x and a median length of 2,650, and all
the aligned reads to the human reference genome hg19 are
downloaded from GIAB [18]. CrossMap [25] is then used to
identify heterozygous SNPs positions from 1000 Genomes
Project (based on hg18). The trio-phased haplotypes for
NA12878 from 1000 Genomes Project [21] are used as the
ground-truth.

Table 1 shows the performance of FastHare, HapCut2,
WhatsHap and DCHap. FastHare is faster than other meth-
ods but also has the most switch errors and mismatch
errors. While HapCut2 and WhatsHap largely improve on
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TABLE 1
Comparison of phasing performance on the SMRT PacBio data (all chromosomes) [18]

Software Switch Error Rate (#) Mismatch Error Rate (#) Phased Rate (%) AN50 (k) Time (minutes)
FastHare 0.00119 (1577) 0.00270 (3764) 99.050 209 13.02

HapCUT2 0.00096 (1278) 0.00265 (3701) 99.053 209 99.90
WhatsHap 0.00105 (1394) 0.00284 (3965) 99.136 214 211.47

DCHap 0.00084 (1121) 0.00264 (3680) 99.041 204 17.51

TABLE 2
Comparison of phasing performance on ONT Nanopore data (all chromosomes) [19]

Software Switch Error Rate (#) Mismatch Error Rate(#) Phased Rate (%) AN50 (k) Time (minutes)
FastHare 0.00110 (1529) 0.00367 (5092) 98.778 3882 170.46

HapCUT2 0.00103 (1431) 0.00355 (4930) 98.767 3877 244.32
WhatsHap 0.00097 (1342) 0.00422 (5865) 98.961 3956 199.63

DCHap 0.00098 (1351) 0.00364 (5052) 98.776 3488 58.68

the phasing accuracy, their running time is significantly
higher than FastHare. DCHap returns the minimum switch
errors and mismatch errors, and its running time is still
comparable to FastHare because the reliable regions cover
more than 90% of the whole genome and the average gap
lengths is less than one (refer to Fig. 5 (a) for the length
distributions of gaps). DCHap’s phased rate and AN50 are
smaller than others because DCHap applies a conservative
way to bridge reliable regions, and incorrect phasing links
and positions may increase the phased rate and AN50.

3.4 Real ONT Nanopore Data

The ONT Nanopore reads from the individual NA12878
have a median depth of 37x and a median length of
5,950 [19]. Again, we use the trio-phased haplotypes for
NA12878 from 1000 Genomes Project [21] as the ground-
truth.

Table 2 summerizes the performance of FastHare, Hap-
CUT2, WhatsHap and DCHap on this ONT Nanopore data.
Interestingly, DCHap is faster than all other tools, including
FastHare. As the running time of FastHare increases lin-
early with the average read length [5] and the extra long
reads (> 100k) [19] in this dataset makes FastHare run
slower than DCHap. DCHap achieves a 3-5X speedup on
this dataset because the reliable regions cover 92.92% of
the whole genome and the gaps between two neighboring
reliable regions remain very short for error-prone nanopore
reads (refer to Fig. 5 (b) for the distribution of gap lengths).
DCHap are among the best with respect to both the switch
errors and mismatch errors, while HapCUT2 has notably
more switch errors and WhatsHap has significantly more
mismatch errors.

4 DISCUSSION AND CONCLUSION

In this paper, we introduced DCHap, a fast and accurate
algorithm for haplotype phasing using third-generation se-
quencing data. Extensive experiments on simulated and real
data show that DCHap achieves a better or comparable
phasing accuracy while offering scalability with respect
to increasing read lengths and coverage. As the third-
generation sequencing platforms continue improving on
their throughput and read lengths, accurate and scalable
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Fig. 5. Gap length distribution between neighboring reliable regions in
DCHap. (a) is for 46x coverage SMRT PacBio data [18] and the (b) is for
37x coverage ONT Nanopore data [19].

tools like DCHap are important to improve haplotype phas-
ing from the advances of sequencing technologies.

DCHap currently sets a fixed length of sliding windows
to identify the reliable regions for the whole dataset. As we
discuss in Results Section, different window lengths may
be preferred for different read coverage and error rates.
Therefore, choosing a dynamic window length may increase
phasing performance as the read coverage varies along the
chromosomes and the error rate changes with respect to
different protocols in generating the TGS data.

Existing phasing tools (such as Probhap [12] and Hap-
CUT2 [5] ) use probabilistic models to maximize a likelihood
function to phase haplotypes. Compared to the MEC model
used in this paper, the flexibility in likelihood models allows
to model different sources of errors (e.g., PacBio SMRT and
ONT Nanopore) and integrate sequence data from diverse
platforms [5]. How to extend DCHap to support a likelihood
model is worth investigating.

5 ADDITIONAL FILES

The commands used in the benchmark are listed in the
Additional file 1–Command Line.
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