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GraphPlas: Refined Classification of Plasmid
Sequences using Assembly Graphs

Anuradha Wickramarachchi and Yu Lin

Abstract—Plasmids are extra-chromosomal genetic materials with important markers that affect the function and behaviour of the
microorganisms supporting its environmental adaptations. Hence the identification and recovery of such plasmidic sequences from
assemblies is a crucial task in metagenomics analysis. In the past, machine learning approaches have been developed to separate
chromosomes and plasmids. However, there is always a compromise between precision and recall in the existing classification
approaches. The similarity of compositions between chromosomes and their plasmids makes it difficult to separate plasmids and
chromosomes with high accuracy. However, high confidence classifications are accurate with a significant compromise of recall, and
vice versa. Hence, the requirement exists to have more sophisticated approaches to separate plasmids and chromosomes accurately
while retaining an acceptable trade-off between precision and recall. We present GraphPlas, a novel approach for plasmid recovery
using coverage, composition and assembly graph topology. We evaluated GraphPlas on simulated and real short read assemblies with
varying compositions of plasmids and chromosomes. Our experiments show that GraphPlas is able to significantly improve accuracy in
detecting plasmidic and chromosomal contigs on top of popular state-of-the-art plasmid detection tools.
The source code is freely available at: https://github.com/anuradhawick/GraphPlas.

Index Terms—plasmid recovery, metagenomics, classification, assembly graph
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1 INTRODUCTION

THE recovery of plasmids remains to be a challenging yet
intriguing task in metagenomics analysis due to their

participation in environmental adaptations of microorgan-
isms. These sequences often consist of circular deoxyribonu-
cleic acid (DNA) molecules and can replicate independently
from the bacterial chromosomes. Plasmids lack genes that
are commonly related with main metabolic processes, but
rather carry genes that allow the host cell to adapt rapidly to
changing environmental conditions and survive under vari-
ous selective pressures [1], [2], [3]. Moreover, plasmids con-
tribute to horizontal gene transfer among different species
of bacteria allowing them to gain genes related to antibiotic
resistance and heavy metal resistance [2], [4], [5]. Hence it
is biologically important to identify and recover plasmids
from environmental samples, and study them to understand
their behaviour and functions.

Plasmid studies have benefited immensely from culture-
based methods to understand genetic elements from dif-
ferent bacteria [6]. However, the genetic elements of non-
cultivable bacteria cannot be studied using these culture-
based methods. Alkaline lysis [7] is a widely used method
to extract plasmids from bacterial cells, but this method
is not suitable for a complex sample containing other
eukaryotes [8]. Moreover, analysing plasmids using PCR-
based methods such as PCR-based replicon typing (PBRT)
scheme [9] are labour-intensive and provide results with
limited resolution [10]. Furthermore, culture-independent
methods such as exogenous plasmid isolation [11] and
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Transposon-aided capture (TRACA) [12] may misinterpret
the total amount of plasmids present in the sample [8].
Hence, computational methods are preferred for the recov-
ery of plasmids.

Next-generation sequencing (NGS) technologies such as
Illumina have enabled us to sequence and analyse bacterial
genomes including both their chromosomes and plasmids,
directly from their environments [13]. When we sequence
environmental samples, we obtain reads from both chromo-
somes and plasmids of species present in the sample. Hence,
certain post-processing steps are required to recover these
sequences originating from plasmids. plasmidSPAdes [14],
Recycler [15], PLACNET [16] and PLACNETw [17] are
some of the tools which have been developed to directly
reconstruct plasmid sequences from raw NGS reads.

NGS technologies can produce highly accurate reads
with very low error rates. However, due to their limited
read lengths (100-300 bp), it becomes challenging to separate
reads directly as they may not contain accurate genomic
signatures [18]. Hence, a common method carried out to
identify plasmids is to first assemble the short NGS reads
into much longer sequences called contigs and then classify
these contigs as originating from chromosomes or plasmids.
There are several approaches that rely on coverage and
graph topology (e.g. Recycler [15] and SCAPP [19]) for
the recovery of plasmids from plasmid assemblies. These
tools extract contigs with circular structures by peeling off
paths in the assembly graph, observing the coverages in an
unsupervised manner. The main limitation of these tools
is that the recovered contigs based on circular paths may
not be plasmids due to complexities in assembly graphs.
Furthermore, circular chromosomes and linear plasmids
exist making it further challenging to recover plasmids in
an unsupervised manner. Hence, tools have been developed
based on supervised machine learning techniques to over-
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come these issues.
Tools such as cBar [20], PlasmidFinder [21], mlplas-

mids [10], PlasFlow [22], PlasClass [23] and Platon [24]
utilise the composition profiles of sequences to label con-
tigs as chromosomes or plasmids. However, the assembled
contigs are typically shorter and fragmented for plasmid
assemblies due to the relatively lower abundance of plas-
midic reads. This results in poor composition and gene pro-
files. Therefore, there is a significant compromise between
the precision and recall in plasmid classification (refer to
PlasClass and PlasFlow results in Fig. 2 and Fig. 3. These
plots are obtained by varying the probability threshold used
for identifying plasmids by each tool from 0 to 1, followed
by computation of precision and recall for each plasmid
and chromosome class.). Hence, improving precision along
one class will result in poor precision of the other class
with lower recall within the same class, and vice versa.
There have been several efforts to address similar issues
in metagenomics binning by tools such as GraphBin [25]
and GraphBin2 [26]. However, the contigs are clustered into
bins only at species level and the plasmid level annotations
are not available. Moreover, composition information is not
used in GraphBin and GraphBin2.

In this paper, we propose an assembly graph assisted
approach of improving plasmid recovery by harnessing
information such as composition, coverage and connectivity
in the assembly graph. The proposed methodology signif-
icantly improves the precision and recall of the plasmid
classification on top of popular tools in the field. To the best
of our knowledge, this is the first time that composition,
coverage and graph topology information of assembled
contigs have been utilised together to address the problem
of plasmid sequence classification.

2 METHODS

The complete workflow of GraphPlas is demonstrated in
Fig. 1. GraphPlas takes assembled contigs and the relevant
assembly graph as the input. Then the contigs are classified
using an existing plasmid detection program that predicts
the plasmid probability of contigs. Then the contigs are
labelled as chromosomes, plasmids or unclassified depending
on the probability values. Note that the unclassified class
contains contigs that are either shorter than 1000 bp or
ones with probabilities that are in-between the probability
boundaries of plasmids and chromosomes.

For the initial prediction, we chose the approaches pre-
sented by PlasClass [23] and PlasFlow [22]. This is because
PlasClass and PlasFlow outputs probability values on which
a confidence level can be applied. Also, the classifications
at higher confidence regions are reliable. We varied the
probability threshold for PlasClass in order to investigate if
the classification can be improved just by parameter tuning.
However, from Fig. 2 and Fig. 3 it is clearly evident that
means beyond parameter tuning are required for better
results. Furthermore, it is evident that at high confidence
thresholds the precision of classification is reasonably high
for GraphPlas to improve the results.

2.1 Computation of contig similarity metrics
For the steps 2 and 3 in Fig. 1, distances between contigs are
required to label the assembly graph in a semi-supervised

manner. These distances are derived from summing up neg-
ative log values of similarities obtained from three different
methods. The computation of each similarity measure is
explained in the following sub sections.

2.1.1 Computing similarity of contigs using the topology of
assembly graph
Consider the assembly graph G where V is the set of
vertices that represents the contigs in the graph. Let L be
the set of labelled vertices and U be the set of unlabelled
vertices. Topological similarity St(Vi, Vj), where Vi∈U and
Vj∈L, is computed using the random walk probabilities. In
GraphPlas we use a variant of label propagation algorithm
proposed in [27]. The detailed algorithm is presented in
Section 1 of the Supplementary materials.

2.1.2 Computing similarity of contigs using composition
The composition similarity Sk is computed using equation
1 [28].

Sk =
N (De(Vi,Vj)|µintra,σ

2
intra)

N (De(Vi,Vj)|µintra,σ2
intra)+N (De(Vi,Vj)|µinter,σ2

inter)
(1)

Here De(Vi, Vj) represents euclidean distance between
4-mer (tetramer) vectors of vertices Vi and Vj respectively.
For this formula we use approach presented by [28]. The
mean and standard deviation are computed for each of
the tetramer frequency vector distances within and between
different microbial species using mean and standard devi-
ation of euclidian tetramer vector distances within species
and between species, where µintra and µinter represents
mean distances and, σintra and σinter represents standard
deviations of distances within and between species respec-
tively. In order to estimate the µintra, σintra, µinter and
σinter we consider the set of all the reference Chromosomes
and Plasmid assemblies from NCBI refseq database. First
we seed 50 subsequences of length 10000 bp from each
of the reference sequence and compute their normalised
tetranucleotide frequency vectors. The resulting histograms
are presented in Fig. 4. From these histograms we compute
that µintra = 0.02, σintra = 0.010/2, µinter = 0.069 and
σinter = 0.034. However, for probability computations in
equation 1 we use µintra = 0 to ensure nearly identical
sequences will have high similarity similar to [28].

2.1.3 Computing similarity of contigs using coverage
The similarity of two coverages is computed as Sc =
Poisson(Cov(Vi)|Cov(Vj)), where Cov(Vi) and Cov(Vi)
demonstrate the coverage of vertices Vi and Vj respectively
similar to work done by [28].

2.2 Step 1: Initial Classification

GraphPlas is capable of obtaining the seed classifications
from either PlasClass or PlasFlow. The composition profiles
tend to deviate significantly as the length becomes shorter.
Hence, we chose 1000 bp as the cutoff for the initial classifi-
cation, similar to the default settings of many other binning
tools in metagenomics [28], [29], [30]. Therefore, we consider
the contigs that are greater than 1000 bp for the initial results
of PlasClass and PlasFlow.
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Fig. 1. The workflow of GraphPlas. The inputs for the workflow are the contigs and the assembly graph output from the assembler. The contigs
are initially classified and the most confident set of contigs are used as seeds. Contig labels are propagated to other contigs using graph topology,
composition and coverage information. Finally the contig labels are refined again and ids are output with the assigned label.

We chose the most confident set of classifications from
the classification result provided by the selected tool. First
we order the contigs based on the predicted probability in
the decreasing order. We label 50% of the contigs below
0.5 probability threshold as chromosomes in both tools. We
label the top 10% above 0.5 probability threshold as plas-
mids for PlasClass. We chose 20% for PlasFlow as it tends to
predict plasmids with a slightly lower tendency. The contigs
that are neither classified as plasmids or chromosomes are
labelled as unclassified.

We introduce labelled components and unlabelled compo-
nents to support the next step. A labelled component is defined
as a component in the assembly graph with atleast one
contig with a label other than unclassified. Conversely an

unlabelled component is a component whose all contigs are
labelled as unclassified. Refer to Fig. 5(a) for the classification
result of dataset Sim-2C9P using PlasClass. The initial clas-
sification result that is chosen by GraphPlas is demonstrated
in Fig. 5(b), and unlabelled components are circled in red
colour.

2.3 Step 2: Processing labelled components

In this step we consider components of the assembly graph
that have at least one labelled contig from step 1. Using the
assembly graph and its labelled vertices from the first step,
we label the rest of the unclassified contigs. We first consider
the contigs that are either 1000 bp or longer for labelling.
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(a) Performance on
Sim-2C5P dataset.

(b) Performance on
Sim-2C9P dataset.

(c) Performance on
Sim-10C25P dataset.
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Starting point chromosome (GraphPlas)

(d) Performance on
Sim-14C38P dataset.

(e) Performance on
Wastewater-Plas dataset. Legend.

Fig. 2. Precision-recall curves for PlasClass and GraphPlas. Plots obtained by varing the probability threshold for classification from 0 to 1. For
GraphPlas we have a single point for each class as we pick the best starting threshold for each tool.

We propagate the labels from labelled contigs to the
other contigs based on the distance computed under all
three topological, composition and coverage similarities.
The equation 2 is used to compute the combined distance
D(Vi, Vj) between an unlabelled and a labelled vertex.

D(Vi, Vj) = −log(St × Sk × Sc) (2)

Next we use equation 3 to compute the distance
Dshort(Vi, Vj) for the contigs that are shorter than 1000 bp.
Composition of shorter contigs is not considered because
composition information can be unreliable for shorter con-
tigs [30]. Hence, the distance computation is limited only to
topological and coverage similarities.

Dshort(Vi, Vj) = −log(St × Sc) (3)

We use the above equations as the distance metric for a
KNN (K-Nearest Neighbours) classifier with up to 5 nearest
neighbours. The contigs are then labelled using the majority
vote. This classification is done in a step wise fashion for
long and short contigs (shorter than 1000 bp) in order. Refer
to Fig. 5(c) for the classification result of dataset Sim-2C9P
after processing labelled components.

2.4 Step 3: Processing unlabelled components
In this step we label the contigs from assembly graph
components that do not contain any labelled contigs. There-
fore, we rely on the labelled set of contigs in the entire
assembly graph in this step. In order to label such isolated
components in the graph, we use a KNN classifier using
only the composition and coverage information. We use
equations 4 and 5 to compute the distances Disolated(Vi, Vj)
and Disolated short(Vi, Vj) respectively. Disolated(Vi, Vj) is
computed for vertices that are 1000 bp or longer and
Disolated short(Vi, Vj) is computed for contigs that are
shorter than 1000 bp.

Disolated(Vi, Vj) = −log(Sk × Sc) (4)

Disolated short(Vi, Vj) = −log(Sc) (5)

Similar to step 2, we use equations 4 and 5 as the distance
metric for a KNN classifier to classify the vertices in the
isolated components. The KNN classifier is initiated on
contigs longer than 1000 bp with only two neighbouring
vertices. This is because the longer contigs in the assembly
graph tend to have better coverage and composition repre-
sentations. Furthermore, contigs at the repeat points have
multiple edges and elevated coverage values. Hence, such
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(a) Performance on
Sim-2C5P dataset.

(b) Performance on
Sim-2C9P dataset.

(c) Performance on
Sim-10C25P dataset.
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Fig. 3. Precision-recall curves for PlasFlow and GraphPlas. Plots obtained by varing the probability threshold for classification from 0 to 1. For
GraphPlas we have a single point for each class as we pick the best starting threshold for each tool.

contigs are avoided by limiting the number of neighbours
to a maximum of 2. Majority voting of up to 5 neighbours
is used for the labelling process. Refer to Fig. 5(d) for the
classification result of dataset Sim-2C9P after processing
labelled components. Note that there are still unsupported
labels from the initial classification, circled in red. There
are no neighbouring contigs that support the labels of such
contigs.

2.5 Step 4: Refining the labels

We define contigs that are connected to other contigs from
a different label without any support of its own label as
ambiguously labelled contigs. In this step we utilise the
assembly graph to correct the labels of such ambiguously
labelled contigs. Majority voting is used in order to correct
such labels. We start the label correction from non-leaf
vertices (i.e. vertices with more than 1 neighbour) since
they are more informative in terms of neighbours. Finally,
the labels of the leaf vertices (i.e. vertices with only one
neighbour) are corrected to match the neighbouring vertex.
Fig. 5(e) demonstrates the assembly graph once GraphPlas
refines the final result from previous steps.

3 EXPERIMENTAL SETUP

3.1 Datasets
We evaluated GraphPlas using four simulated datasets and
one real dataset with varying complexities and plasmid
copy numbers. The information on the datasets considered
are as follows. Please refer to Section 2 of the Supplementary
materials for the detailed information of the simulation.

TABLE 1
Information on the datasets used for the experiments.

Dataset
Read

length
(bp)

Number
of

reads

Number
of

contigs

Edges in the
graph

Sim-2C5P 300 239425 128 471
Sim-2C9P 300 368632 187 921
Sim-10C25P 300 1359961 636 2913
Sim-14C38P 300 3371230 1881 3977
Wastewater-Plas† 125 8757400 32510 3215
†We only considered contigs with length 1000 bp or longer.
A unique ground truth was discovered only for 436 contigs.
However, the complete graph was utilised in the program.

1) We simulated four datasets using InSilicoSeq sim-
ulator [31] with MiSeq configuration that pro-
duces reads of length 300 bp. Similar to the work
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(b) Inter sequence distances.
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(d) Probability vs distance.

Fig. 4. Distance histograms for intra and inter sequence distances for normalised tetranucleotide distances. (a) and (b) demonstrates the histogram
for euclidean distances of tetramer vectors for sequences within a given species and between different species respectively. (c) demonstrates the
resulting normal distributions plotted using means and standard deviations obtained from (a) and (b). (d) demonstrates the probability vs distance
curve computed using the equation 1.

done by Pellow et. al [23] we used the equation
5×min(1, log(L)/10), where L is the length of the
plasmid reference, to compute probability of success
for a geometric distribution to obtain the plasmid
copy numbers. These copy numbers were used to
calculate the simulation coverage of each plasmid.
This was performed to amplify the plasmid copy
numbers of shorter plasmids.

• Sim-2C5P: Contains 1 species with a total of
2 chromosomes and 5 plasmids.

• Sim-2C9P: Contains 1 species with a total of
2 chromosomes and 9 plasmids.

• Sim-10C25P: Contains 5 species with a total

of 10 chromosomes and 25 plasmids.
• Sim-14C38P: Contains 7 species with a total

of 14 chromosomes and 38 plasmids.

2) We used the wastewater plasmidome sample
ERR1538272 (referred as Wastewater-Plas) [32] in
order to evaluate the performance of GraphPlas
on real datasets. The dataset was assembled using
metaSPAdes [33]. The dataset consists of Illumina
HiSeq 2500 paired end reads with read length of
125 bp.

Table 1 indicate the number of reads, contigs and the
read length of each of the dataset assembled.
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(a) Classification by PlasClass. (b) Confident labels from PlasClass. (c) After labelling using topology.

(d) After labelling unlabelled components. (e) GraphPlas result after refinement. (f) Ground truth.

Fig. 5. Assembly graph with contig labels for the dataset Sim-2C9P at different stages of GraphPlas. Chromosomes and plasmids are represented
in orange and green colours respectively. Unlabelled components are circled in (b). Contigs that need to be refined are circled in (d). The contigs
without a unique mapping to a single class are indicated in white.

3.2 Evaluation Criteria
We evaluated GraphPlas using macro-averaged precision,
recall and F1-score using the following standard equations
where;
• TPp: the number of actual plasmidic sequences that

were classified as plasmidic (true positives for plas-
mids)

• TPc: the number of actual chromosomal sequences
that were classified as chromosomal (true positives
for chromosomes)

• FPp: the number of non-plasmidic sequences that
were classified as plasmidic (false positives for plas-
mids)

• FPc: the number of non-chromosomal sequences
that were classified as chromosomal (false positives
for chromosomes)

• FNp: the number of plasmidic sequences that were
not classified as plasmidic (false negatives for plas-
mids)

• FNc: the number of chromosomal sequences that
were not classified as chromosomal (false negatives
for chromosomes)

Precision(%) =
1

2
× TPp
TPp + FPp

+
1

2
× TPc
TPc + FPc

(6)

Recall(%) =
1

2
× TPp
TPp + FNp

+
1

2
× TPc
TPc + FNc

(7)

F1 score(%) = 2× Precision×Recall
Precision+Recall

(8)

The metrics for each class is averaged in order obtain
values with fair representation on each imbalanced class.
Similar to previous evaluations in plasmid studies [23], the
fraction of plasmidic contigs recovered, TPp/(TPp +FNp),
is also considered in our comparison. For the set of sim-
ulated datasets, the ground truth label was assigned by
mapping the assembled contigs to the respective set of
reference genomes. The mapping was performed using
Minimap 2.1 [34]. Only the contigs with a unique mapping
to either plasmids or chromosomes were considered in the
evaluation. Furthermore, the assembled contigs from the
real dataset, with unknown ground truth were alined to the
NCBI assemblies. The contigs that had a unique mapping
to either plasmids or chromosomes were considered in the
evaluation. Moreover, we only considered the contigs that
are either 1000 bp or longer with an alignment beyong 50%
of the query length.
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TABLE 2
Comparison of macro-averaged classification results of PlasClass [23] and GraphPlas with PlasClass as the initial classifier.

Dataset Tool used Precision (%) Recall (%) F1 score (%)
Percentage
of plasmids

recovered (%)

Sim-2C5P PlasClass 58.70 56.01 57.33 86.00
GraphPlas 99.02 99.32 99.17 100.00

Sim-2C9P PlasClass 58.92 64.48 61.58 92.59
GraphPlas 93.55 98.60 96.01 100.00

Sim-10C25P PlasClass 60.82 64.06 62.40 84.06
GraphPlas 85.20 93.51 89.17 100.00

Sim-14C38P PlasClass 53.88 58.81 56.23 80.00
GraphPlas 66.66 81.82 73.47 82.44

Wastewater-Plas PlasClass 79.18 77.97 78.57 69.04
GraphPlas 80.98 80.35 80.67 74.39

TABLE 3
Comparison of macro averaged classification results of PlasFlow [22] and GraphPlas with PlasFlow as the initial classifier.

Dataset Tool used Precision (%) Recall (%) F1 score (%)
Percentage
of plasmids

recovered (%)

Sim-2C5P PlasFlow 65.90 59.33 62.44 94.00
GraphPlas 100.00 100.00 100.00 100.00

Sim-2C9P PlasFlow 59.05 64.83 61.80 92.59
GraphPlas 60.98 66.43 63.59 100.00

Sim-10C25P PlasFlow 62.53 65.82 64.13 89.13
GraphPlas 73.11 81.97 77.28 96.38

Sim-14C38P PlasFlow 57.14 65.88 61.02 94.15
GraphPlas 60.66 76.37 67.61 95.12

Wastewater-Plas PlasFlow 71.47 70.95 71.21 80.40
GraphPlas 83.36 83.40 83.38 83.07
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Fig. 6. Mean binning results of GraphPlas with original PlasFlow [22] and PlasClass [23] results for all the datasets.

4 RESULTS AND DISCUSSION

4.1 Recovery of Plasmids from Metagenomics Assem-
blies

In this section, we present the results of GraphPlas on
several assembled datasets including a real dataset. All the

datasets were assembled using metaSPAdes [33] assembler.
Table 2 and Table 3 show the comparison results with
PlasClass and PlasFlow respectively. In Fig. 6 the perfor-
mance values are summarised for GraphPlas, PlasClass and
plasFlow. Furthermore, we show the results graphically in
Fig. 2 and Fig. 3. In this diagram we indicate the starting
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points for GraphPlas, which are essentially high confidence
points on the PlasClass result. Starting from those points
GraphPlas pushes towards increasing direction on both
recall and precision. In more challenging scenarios with
relatively lower precision values, GraphPlas improves the
recall while maintaining the same precision.

4.2 Implementation and Performance

According to Table 2 and Table 3 it is evident that the
utilisation of assembly graph with composition and cover-
age information improves the results of plasmid detection
over conventional machine learning approaches. Further-
more, the significant compromise on recall to achieve higher
precision is also mitigated in GraphPlas leading to better F1-
scores.

The demonstrated improvements in GraphPlas prevail
due to two main reasons. Firstly, we utilise the most con-
fident classifications provided by the initialisation tools.
Hence, at the starting point, the bootstrapping labels are
more accurate. Secondly we employ the initial set of labels
to train other contigs based on the composition, coverage
and topology of the assembly graph. Note that it is highly
likely for contigs of the same species to demonstrate a link in
the assembly graph since there exists a path in the de Bruijn
graph that completes the reference genome [35]. Therefore,
GraphPlas is always capable of classifying contigs more
confidently and reliably. Moreover, the shorter lengths of
contigs do not affect the results significantly because of the
connected contigs that are long and confidently classifiable.
This is further evident through Fig. 5 where the labelling
of contigs in each step are demonstrated. Finally, the actual
number of contigs classified into each class are tabulated in
Table 4. Note that the improvements over the real dataset
is not significant since we have limited the ground truth
computations only for contigs longer than 1000 bp. Hence,
the classification of contigs shorter than the threshold are
not considered.

GraphPlas consists of two main components as the initial
classifier and the graph classifier. We have integrated the
PlasClass classifier as the initial classifier. The entire pro-
gram is implemented using python 3.6.7 and tested on a
Intel Core i7-7700 CPU @ 3.60GHz × 8 machine with 16GB
of RAM. The host operating system was Ubuntu 18.04.3
LTS. Multithreading capabilities are used for computing the
tetramer frequency vectors and in the KNN classifier. The
summary of resource utilisation is tabulated under Table 5.
GraphPlas only considers the longer contigs for computa-
tion of plasmid probabilities. Hence, the memory utilisation
for all the experiments were below 300MB. Furthermore, the
GraphPlas algorithm completes within 4 minutes for all the
datasets considered.

5 CONCLUSION AND FUTURE WORK

In conclusion, GraphPlas proposes the ideology of incor-
porating the assembly graph in plasmid classification. We
designed and evaluated GraphPlas which combines conven-
tional machine learning tools with topological information
from the assembly graph for the detection of plasmids.
We also highlighted the importance of assembly graph and

its potential to support in bootstrapping a dataset-specific
model to address the problem of plasmid detection. The
inclusion of assembly graph information to improve per-
formance of the plasmid classification has room for further
improvements. The faulty classifications in the initial seed
contigs could mislead the label propagation degrading the
overall performance. Furthermore, the coverage of contigs
could be inaccurate, leading to misclassifications and hinder
the label refinement.

In future, we intend to investigate the viability of using
third-generation sequencing (TGS) data for the recovery of
plasmid sequences. Furthermore, we intend to extend our
approach on assemblies of TGS reads for metagenomics
binning with recovery of plasmid sequences.
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