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Abstract—SNP calling is a fundamental problem of genetic
analysis and has many applications, such as gene-disease di-
agnosis, drug design, and ancestry inference. Prior approaches
either require high-quality reference genome, or suffer from
low recall/precision or high runtime. We develop a reference-
free algorithm Kmer2SNP to call SNP directly from raw reads,
an approach that models SNP calling into a maximum weight
matching problem. We benchmark Kmer2SNP against reference-
free methods including hybrid (assembly-based) and assembly-
free methods on both simulated and real datasets. Experimental
results show that Kmer2SNP achieves better SNP calling quality
while being an order of magnitude faster than the state-of-the-
art methods. Kmer2SNP shows the potential of calling SNPs only
using k-mers from raw reads without assembly. The source code
is freely available at https://github.com/yanboANU/Kmer2SNP.

Index Terms—SNP calling, Reference-free, K-mer analysis,
Maximum-weight matching.

I. INTRODUCTION

Whole-genome sequencing provides reads originated from
two homologous sets of chromosomes (i.e., haplotypes) from a
single individual, thus makes it amenable to call heterozygous
SNPs1. Thanks to its high throughput, moderate cost and
low error rate, next-generation sequencing (NGS) is gaining
popularity in SNP calling with many applications in popula-
tion genetics and biomedical research, such as gene-disease
diagnosis, drug design and ancestry inference [4].

Most existing approaches for SNP calling rely on the
alignment between raw reads and a reference genome, such
as SOAPsnp [5], GATK [6] and SAMtools [7]. When a high-
quality reference genome is available, these reference-based
approaches achieve the best SNP calling result. However,
many species may not have high-quality reference genomes
for read mapping.

There is a strong need to develop reference-free algo-
rithms for SNP calling. Without the reference genome, such
algorithms are limited to identify heterozygous SNPs (two
different alleles on two haplotypes) rather than homozygous
SNPs (the same allele on two haplotypes but differ from the

*Correspondence should be addressed to Y. L. (yu.lin@anu.edu.au).
1In this paper and other literature [1]–[3], when considering two haplotypes

in an individual genome, SNP refers to single nucleotide variation (SNV)
between two haplotypes without considering the occurrence percentage within
a population.

reference). Moreover, the inferred SNPs cannot be assigned
to a known genomic position as the reference genome is
unknown. In hybrid approaches, raw reads are assembled
into long contigs or scaffolds and SNPs can be identified
by aligning raw reads to assembled contigs and assigned to
positions on these contigs (instead of a reference genome).
Such hybrid approaches suffer not only from misalignment
and errors of raw reads but also from incompleteness and
errors in assemblies [3]. Existing hybrid approaches are limited
to call SNPs in organisms with a small genome size, and
result in lower recall and precision rates comparing to the
reference-based approaches [8]. Another type of reference-
free algorithms call SNPs without explicitly assembling raw
reads into contigs [8]. For example, de Bruijn graphs are built
from raw reads and then SNPs are detected and represented
as specific patterns (e.g., bubble) in de Bruijn graphs [1], [9],
[10]. However, detecting patterns becomes challenging when
de Bruijn graphs get complicated due to various repeats in
genomes and errors in raw reads. Moreover, EBWT2SNP [2]
does not build a de Bruijn graph and uses extended Burrows-
Wheeler Transform(eBWT) from reads to call SNPs as pairs of
k-mers. However, the eBWT positional clustering may become
ambiguous due to sequencing errors in raw reads or highly
repetitive genomic regions, resulting in unstable SNP calling
performance. All the above reference-free algorithms are not
very scalable because it is time-consuming to build either de
Bruijn graphs or eBWT indices from all raw reads.

In this paper, we propose a reference-free approach,
Kmer2SNP for SNP calling directly from raw reads. Our work
has three contributions: (1) we show that the k-mer frequency
distribution provides the power to detect heterozygous k-mers
covering SNPs in an unknown reference genome; (2) we
propose a graph model to model heterozygous k-mers and
reduce the SNP calling problem to finding a maximum weight
matching in the heterozygous k-mer graph; (3) experimental
results show that Kmer2SNP achieves better quality while
being an order of magnitude faster, compared to the state-
of-the-art approaches for SNP calling without references.

II. METHODS

In this section, we define some general terminology.
Kmer2SNP is based on the k-mer analysis from raw reads.



A k-mer is a substring of length k from either the reference
genome or raw reads. Let Σ = {A,C,G, T} be the alphabet
of nucleotides and Σk represents the set of all possible k-
mers. The ith nucleotide of a k-mer x is denoted as x[i],
i in [1, ..., k]. A segment of k-mer can be represented as
x[i, j] = x[i]x[i + 1] . . . x[j], 1 ≤ i ≤ j ≤ k and i, j are
integers. A k-mer from raw reads is called erroneous if it does
not appear in the reference genome. A k-mer from raw reads is
called genomic if it appears in the reference genome. Genomic
k-mers can be divided into two categories, heterozygous k-
mers and homozygous k-mers. Heterozygous k-mers appear
in only one of the two haplotypes while homozygous k-mers
appear in both haplotypes. See Fig. 1 (A) for an example.

Fig. 1. Erroneous, homozygous and heterozygous k-mers as well as isolated
and non-isolated SNP k-mer pairs. H1 and H2 are two haplotypes of one
chromosome from one individual.

We define the frequency of a k-mer as the number of times
this k-mer appears in all raw reads, and the frequency of
k-mers (for sufficiently large k) can be used to distinguish
erroneous, heterozygous and homozygous k-mers [11]. In an
ideal case, erroneous k-mers have the lowest frequencies as
sequencing errors are more or less random in raw reads. The
frequencies of heterozygous k-mers are roughly half of the
frequencies of homozygous k-mers as the former ones only
appear in one of the two haplotypes. Fig. 1 (B) shows the k-
mer frequency histogram where three peaks (from left to right),
corresponding to erroneous, heterozygous and homozygous k-
mers, respectively.

In the following, we focus on heterozygous k-mers in our
work. A SNP can be represented by a pair of k-mers (from
two haplotypes) that differ at the middle position. A SNP is
called isolated if the above pair of k-mers differ only at the
middle position and such a k-mer pair is called isolated SNP
k-mer pair. A SNP is called non-isolated if the above pair
of k-mers differ at least two positions (including the middle
position) and such a k-mer pair is called non-isolated SNP k-
mer pair. Fig. 1(A) shows examples of a isolated SNP and a
non-isolated SNP along with their corresponding k-mer pairs.

A. Pipeline

We introduce a graph model of heterozygous k-mers for
SNP calling. As shown in Fig. 2, Kmer2SNP takes raw reads
as the input and starts from building a heterozygous k-mer
graph, where vertices correspond to heterozygous k-mers and

edges between a pair of heterozygous k-mers correspond to po-
tential SNPs. Kmer2SNP further computes the weight for each
edge using overlapping information between heterozygous k-
mers. Kmer2SNP finally finds a maximum weight matching
in the above graph and outputs the corresponding SNPs. We
will explain each step in the following sections.

Fig. 2. The pipeline of Kmer2SNP.

B. Construct the vertex set – heterozygous k-mers

In the above heterozygous k-mer graph, each vertex is a
heterozygous k-mer. Constructing the vertex set is to identify
heterozygous k-mers. Kmer2SNP uses DSK [12] to count k-
mer frequencies from raw reads and derive a corresponding
k-mer histogram file. Then FindGSE [11] is used to find
the frequency range of heterozygous k-mers. Using DSK and
FindGSE, Kmer2SNP effectively retains most heterozygous
k-mers and filters most erroneous k-mers and homozygous k-
mers2. Kmer2SNP further uses k-mer pairing information to
filter homozygous k-mers and erroneous k-mer in the next
step.

C. Construct the edge set – k-mers pairs

After constructing the vertex set, Kmer2SNP constructs
edges between k-mer pairs that correspond to SNPs. As
defined in Section II, there are two types of k-mer pairs:
isolated SNP k-mer pairs and non-isolated SNP k-mer pairs.
Kmer2SNP thus introduces two types of edges, h1-edges and
h2-edges to represent those k-mer pairs, respectively.

According to the definition of isolated SNP k-mer pairs,
there is an h1-edge between two k-mers x and x′ if and
only if x[ (k+1)

2 ] 6= x′[ (k+1)
2 ] and h(x, x′) = 1, where k is

odd and h() computes the hamming distance. For each k-mer,
Kmer2SNP removes its middle position and uses the remaining
(k-1) positions as a key to compute its index in a hash table.
Clearly, Kmer2SNP connects x and x′ by an h1-edge if and
only if they have the same index in the above hash table.

2Note that k-mers from paralogous sequence variants (PSVs, differences
between duplicated regions in a genome) belong to homozygous k-mers and
thus are filtered.



Similarly, there is an h2-edge between two k-mers x and
x′ if and only if x[ (k+1)

2 ] 6= x′[ (k+1)
2 ] and h(x, x′) = 2,

where k is odd and h() computes the hamming distance.
Clearly, if x and x′ are connected by an h2-edge, either
x[1, (k−1)

2 ] = x′[1, (k−1)
2 ] or x[ (k+3)

2 , k] = x′[ (k+3)
2 , k] holds.

For each k-mer x, Kmer2SNP uses the prefix x[1, (k−1)
2 ] and

suffix x[ (k+3)
2 , k] respectively as keys to compute its index in

hash table. Two k-mers x and x′ are connected by an h2-edge
only if either their prefixes or suffixes have the same index.
Note that Kmer2SNP needs to verify the hamming distances
between k-mers with the same index to add h2-edges.

Note that most homozygous k-mers at low coverage regions
have been successfully filtered because they are unlikely to
form any k-mer pairs. Although k-mers in connected com-
ponents of size 2 (i.e., k-mer pairs) naturally correspond to
potential SNPs, there are still a significant number of vertices
locating in connected components with at least 3 vertices. If a
k-mer is attached to multiple edges, how could we assign this
k-mer to an edge that most likely corresponds to a real SNP?
In the next step, we show how to compute a weight for each
edge that indicates the likelihood of the corresponding SNP
being true.

D. Calculate weights for edges

In the heterozygous k-mer graph, each edge now corre-
sponds to a potential SNP and the weight of an edge should
indicate how likely this potential SNP is true. As shown Fig. 3
(a), an edge is constructed between an isolated SNP k-mer pair
where these two k-mers only differ at the middle position. Note
that there are other heterozygous k-mers which also cover this
isolated SNP (not at the middle position) and may provide
support to this potential SNP. Therefore, Kmer2SNP calculates
a weight for each edge based on the presence or absence
overlapping heterozygous k-mers that also support this SNP.

Fig. 3. Compute weights for edges. Case (a) is a perfect case and the
weight of edge (x, x′) is 4. Case (b), the left-side extension terminates when
no left-overlapping pair of heterozygous k-mers is found and the right-side
extension terminates when two pairs of right-overlapping heterozygous k-mers
are found. Therefore, the weight of edge (x, x′) is 2.

A pair of k-mers (y, y′) is called left-overlapping (right-
overlapping) with another pairs of k-mers (x, x′) if x[1, k −
1] = y[2, k], x′[1, k− 1] = y′[2, k] and y[1] = y′[1] (x[2, k] =
y[1, k−1], x′[2, k] = y′[1, k−1] and y[k] = y′[k]). Kmer2SNP
iteratively recruits left-overlapping and right-overlapping pairs
of heterozygous k-mers to extend isolated SNP k-mer pairs on
both sides. The extension on the left (right) side terminates
if Kmer2SNP fails to find a unique pair of left-overlapping
(right-overlapping) heterozygous k-mers which still covers
the isolated SNP. The left (or right) extendable length of

an isolated SNP k-mer pair (x, x′), l(x, x′) (or r(x, x′)), is
defined as the number of left-overlapping (right-overlapping)
pairs of heterozygous k-mers recruited in the extension. For
example, l(x, x′) = r(x, x′) = 1 in Fig. 3 (b). Finally, the
weight of an edge between an isolated SNP k-mer pair (x, x′)
is defined as l(x, x′) + r(x, x′) as a conservative estimate.

Similarly, we also introduce weights for edges between
the corresponding non-isolated SNP k-mer pairs. We expect
the True-Positive (TP) edges have higher weights than False-
Positive (FP) edges, e.g., the mean weight of TP edges is
28.92 while the mean weight of FP edges is 5.31 in a
simulated dataset from NA12878 Chromosome 22 (30x for
each haplotype). In the next step, we thus use the maximum
weight matching to select more confident SNPs.

E. Compute maximum weight matching and output SNPs

According to the previous section, the more weight that
Kmer2SNP assigns to an edge, the more likely the corre-
sponding SNP is true. Therefore, Kmer2SNP computes the
maximum weight matching in the above heterozygous k-mer
graph, where the maximum weight matching is a set of pairwise
non-adjacent edges in which the sum of weights is maximized.
Kmer2SNP identifies all the connected components and uses
python package NetworkX [13] to compute the maximum
weight matching for each component with at least three
vertices. This can be done efficiently thanks to the relatively
small size of connected components in the graph.

The edges in the maximum weight matching are then
converted back to SNPs as pairs of k-mer. Kmer2SNP further
filters edges if its weight is lower than a weight threshold (4
in default setting). As each non-isolated SNP corresponds to
two pairs of non-isolated SNP k-mers (refer to Fig. 1) and this
non-isolated SNP is included in the output only if both edges
are selected in the final maximum weight matching.

III. EXPERIMENTAL DESIGN AND RESULTS

We use the following datasets for our evaluations.
1) HG-CN . Simulated datasets are generated from Chro-

mosome N using trio-phased haplotypes of individual
NA12878 [14]. Illumina Hiseq reads with different
coverages on different chromosomes are simulated by
ART [15] Version 2.5.8 (June 7, 2016).

2) NA12878 and NA24385. NA12878 and NA24385 con-
tain real 300X Illumina HiSeq reads aligned to dif-
ferent chromosomes of two individuals (NA12878 and
NA24385) and are downloaded from NCBI [16], [17].

3) Fungal. The phased Candida albicans SC5314 reference
genome (version A22) is downloaded from Candida
Genome Data [18]. The size of this fungal genome
is 14.3 Mb and its heterozygous rate is 0.5% [19].
100X Illumina Hiseq reads (50X for each haplotype)
are simulated by ART [15].

4) PucStrE137. The Dikaryotic Wheat Stripe Rust Fun-
gus Puccinia striiformis f. sp. tritici (Strain: 104
E137 A-) dataset consists of 108X HiSeq 2000 Illu-
mina reads downloaded from NCBI (accession number



SRX3181917). The size of this genome is 83 Mb after
manual curation and its heterozygous rate is estimated
to be 1.2% [20].

A. Baseline Methods

We compare Kmer2SNP against two state-of-the-art
reference-free SNP calling tools, DiscoSNP++ [1], [3] and
EBWT2SNP [2], as they show the best results in recent
benchmarking [1], [2]. As for hybrid approaches, we use
SPAdes [21] and SGA [22] to assemble Illumina reads
into contigs. We further use BWA [23] to align reads to
the assembled contigs and apply two popular SNP calling
pipelines, SAMtools (bcftools) [24] and GATK [25], to call
SNPs. These hybrid approaches are called SPAdes+GATK,
SGA+SAMtools, etc.

Note reference-free approaches cannot assign SNPs to
known genomic positions. Following the evaluation metri-
ces in [2], each ground-truth SNP is represented as a pair
of heterozygous k-mers. For NA12878 and NA24385, we
download the reference genomes along with SNP annotations
from [14], [26], [27] to generate heterozygous k-mer pairs
as ground-truth. For Fungal, we download two homologous
sets of chromosomes from [18], and then use BLASR [28]
to align them to obtain heterozygous k-mer pairs. For Puc-
StrE137, heterozygous k-mer pairs are derived by two phased
haplotypes derived from 100X PacBio reads assembled by
FALCON-Unzip [20]. As different reference-free approaches
for SNP calling may have different output formats, we convert
all output SNPs into heterozygous k-mer pairs to make a fair
comparison. Three metrics, recall, precision and F1-score, are
used to evaluate the performance of SNP calling.

B. Results on HG-CN datasets

We perform extensive experiments by varying the k-mer
sizes and the sequencing coverages on different chromosomes.
Among the many combinations of parameters tested, we show
some representative results on HG-C22. HG-C22 consists of
simulated Illumina Hiseq reads with different coverages of
Chromosome 22.

The choice of k-mer sizes The k-mer size is an impor-
tant parameter for Kmer2SNP, DiscoSNP++ and EBWT2SNP.
DiscoSNP++ shows that the k-mer size has a limited impact
on the SNP calling quality [1], [3] and performs experiments
by setting k=31. EBWT2SNP [2] chooses a sufficiently large
k-mer (k=31 in all the experiments) such that a k-mer is
expected to appear at most once in the genome. Kmer2SNP
also achieves stable performance across different k-mer sizes
on HG-C16 and HG-C22 dataset. Therefore, in the following
experiments, the k-mer size is chosen to be 31 by default.

The effect of different coverages Fig. 4 shows that
Kmer2SNP outperforms DiscoSNP++ and EBWT2SNP on
recall and precision while being an order of magnitude faster
for SNP calling on HG-C22 dataset. Moreover, with the
increase of read coverages, the running time of DiscoSNP++
and EBWT2SNP increases significantly while Kmer2SNP still
maintains low running time. Also, the memory usage of

Fig. 4. SNP calling on different read coverage of HG-C22.

Kmer2SNP is also lower or comparable to DiscoSNP++ and
EBWT2SNP.

C. Results on NA12878 and NA24385 datasets

The SNP calling results on NA12878 (Chromosome 22)
and NA24385 (Chromosome 22) are shown in Table I and
Table II, respectively. Both tables demonstrate that Kmer2SNP
outperforms existing reference-free SNP calling tools in both
quality and scalability. Consistent with previous results [3], al-
though hybrid approaches achieve high recall rates, they suffer
seriously from errors in assemblies of complex genomes, thus
call many false positive SNPs and result in low precision rates.

TABLE I
PERFORMANCE OF SNP CALLING ON NA12878 (CHROMOSOME 22) [16].

Tools Recall Precision F1-score CPU time
SPAdes+GATK 0.94 0.43 0.59 80.53h

SPAdes+Samtools 0.94 0.47 0.63 64.98h
SGA+GATK 0.78 0.44 0.56 57.31h

SGA+Samtools 0.77 0.44 0.56 41.26 h
DiscoSNP++ 0.77 0.76 0.77 8.88h
EBWT2SNP 0.85 0.56 0.68 47.16h
Kmer2SNP 0.89 0.80 0.84 1.35h

TABLE II
PERFORMANCE OF SNP CALLING OF NA24385 (CHROMOSOME 22) [17]

Tools Recall Precision F1-score CPU time
SPAdes+GATK 0.95 0.30 0.46 84.60h

SPAdes+SAMtools 0.95 0.36 0.52 67.27h
SGA+GATK 0.76 0.37 0.50 67.66h

SGA+SAMtools 0.76 0.37 0.50 48.50h
DiscoSNP++ 0.65 0.62 0.64 9.40h
EBWT2SNP 0.83 0.50 0.62 41.75h
Kmer2SNP 0.80 0.73 0.76 1.19h

D. Results on Fungal dataset

Table III summarizes the SNP calling results of dif-
ferent tools for SNP calling on Fungal dataset. Similar
to the above experiments results, Kmer2SNP outperforms
existing reference-free approaches including DiscoSNP++,



EBWT2SNP and hybrid approaches. Note the precision of
hybrid approaches improves as this genome does not contain
complex repeat structures as in the human genome, however,
the overall performance of hybrid approaches is still not as
good as Kmer2SNP.

TABLE III
PERFORMANCE OF SNP CALLING ON THE FUNGAL DATASET

Tools Recall Precision F1-score CPU time
SPAdes+GATK 0.77 0.92 0.84 15.32h

SPAdes+SAMtools 0.77 0.92 0.84 10.09h
SGA+GATK 0.63 0.94 0.75 12.15h

SGA+SAMtools 0.63 0.93 0.75 6.92h
DiscoSNP++ 0.76 0.97 0.85 2.41h
EBWT2SNP 0.69 0.98 0.81 4.91h
Kmer2SNP 0.82 0.97 0.89 0.19h

E. Results on PucStrE137 dataset

Table IV shows SNP calling performance on PucStrE137
dataset with 1.2% heterozygous rate [20]. Again, Kmer2SNP
achieves the best F1-score comparing to other approaches.
Note that all reference-free approaches have relatively low
recall and precision rates due to the limitations in short
reads, which indicates the importance of using long reads to
assemble and phase haplotypes in genomes with relatively high
heterozygous rate.

TABLE IV
PERFORMANCE OF SNP CALLING ON PUCSTRE137 DATASETa

Tools Recall Precision F1-score CPU time
SPAdes+GATK 0.40 0.50 0.44 155.45h

SPAdes+SAMtool 0.38 0.51 0.44 127.19h
DiscoSNP++ 0.31 0.67 0.42 8.59h
EBWT2SNP 0.17 0.52 0.26 22.39h
Kmer2SNP 0.47 0.55 0.51 1.62h

aSGA+GATK, SGA+SAMtools are not included in this table because
SGA discards more than 90% of reads and the assembly is incomplete.

IV. CONCLUSION AND DISCUSSION

Kmer2SNP shows the potential of calling SNPs directly
from raw reads when the reference genome is not available.
Kmer2SNP introduces a graph model on k-mers and the SNP
calling problem is to find the maximum weight matching
in the graph. Kmer2SNP outperforms other reference-free
approaches in SNP calling quality while being an order of
magnitude faster. Currently, Kmer2SNP has several limita-
tions. First, the current implementation of Kmer2SNP only
supports at most two non-isolated SNPs in a heterozygous k-
mer pair for efficiency purposes. Second, Kmer2SNP is only
applicable to diploid genomes of an individual and how to
extend it to handle polyploid genomes and multiple individuals
is worth future investigation. Last but not least, Kmer2SNP
may benefit from varying the k-mer sizes in building the vertex
set and introducing a probabilistic model in computing the
maximum weight matching.
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