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Recent advances in RNA-seq technology have made identification of expressed genes affordable,
and thus boosting repaid development of transcriptomic studies. Transcriptome assembly, recon-
structing all expressed transcripts from RNA-seq reads, is an essential step to understand gene,
protein, and cell functions. Transcriptome assembly remains a challenging problem due to com-
plications in splicing variants, expression level, uneven coverage and sequencing errors. Here, we
formulate the transcriptome assembly problem as path extraction on splicing graph (or assembly
graph), and propose a novel algorithm MultiTrans for path extraction using mixed integer linear
programming. MultiTrans is able to take into consideration coverage constraints on vertices and
edges, the number of paths and the paired-end information simultaneously. We benchmarked
MultiTrans against two state-of-the-art transcriptome assemblers, TransLiG and rnaSPAdes. Ex-
perimental results show that MultiTrans generates more accurate transcripts compared to TransLiG
(using the same splicing graph) and rnaSPAdes (using the same assembly graph). MultiTrans is
freely available at https://github.com/jzbio/MultiTrans.

1 Introduction

Alternative splicing allows a gene to express mul-
tiple transcripts, which plays an important role in
regulating gene expression and producing diver-
sity of proteins (Baralle and Giudice, 2017; Kele-
men et al., 2013). Studies show that transcripts
from more than 95% of multiexon genes in human
undergo alternative splicing (Pan et al., 2008).
Besides, some diseases such as cancer are re-
lated to abnormal splicing events (Biamonti et al.,
2019; Climente-González et al., 2017; Paronetto
et al., 2016). Therefore, the identification of all
expressed transcripts plays an important role in
diseases researches and transcriptomic studies.

High-throughput RNA sequencing (RNA-seq)
technology has provided an unprecedented op-
portunity to transcriptomic studies (Ozsolak and

Milos, 2011; Liu et al., 2016c; Safikhani et al.,
2017). The RNA-seq protocol takes the expressed
transcripts as input and outputs millions of short
reads. In principle, such short reads can allow us
to recover all expressed transcripts. However, re-
constructing all expressed transcripts from RNA-
seq reads remains a substantial computational
challenge. This task is complicated by highly sim-
ilar paralogs, various alternative splicing variants,
different expression levels of isoforms of the same
gene, and sequencing errors and bias.

Existing work on transcriptome assembly prob-
lem can be mainly divided into two categories:
reference-based approaches and de novo assembly
approaches. The reference-based assemblers such
as StringTie2 (Kovaka et al., 2019), Ryūtō (Gat-
ter and Stadler, 2019), Scallop (Shao and Kings-
ford, 2017a), TransComb (Liu et al., 2016b), Cuf-
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flinks (Trapnell et al., 2012), Bayesember (Opti-
mization, 2014), CIDANE (Canzar et al., 2016),
iReckon (Mezlini et al., 2013), Traph (Tomescu
et al., 2013), and Scripture (Guttman et al., 2010)
usually achieve higher accuracy than de novo as-
semblers when a high-quality reference genome is
available. However, the reference-based strate-
gies depend heavily on the quality of alignment
tools, and they are seriously limited in practice
for the absence of high-quality reference genomes.
Although de novo assemblers may generate more
artificial transcripts than reference-based assem-
blers, they are desired when reference genome is
unknown, incomplete, or substantially altered as
in cancer tissues (Liu et al., 2019).

De novo approaches for transcriptome assem-
bly such as rnaSPAdes (Bushmanova et al., 2019),
TransLiG (Liu et al., 2019), IsoTree (Zhao et al.,
2018), BinPacker (Liu et al., 2016a), Bridger
(Chang et al., 2015), SOAPdenovo-trans (Xie
et al., 2014), IDBA-Tran (Peng et al., 2013),
Oases (Schulz et al., 2012), ABySS (Birol et al.,
2009), and Trinity (Grabherr et al., 2011) first
construct graphs to represent splicing variants
and then extract paths from graphs as recov-
ered transcripts. TransLiG and rnaSPAdes are
two state-of-the-art de novo transcriptome as-
semblers. TransLiG constructs splicing graphs
(Heber et al., 2002) while rnaSPAdes builds as-
sembly graphs (simplified version of de Bruijn
graphs (Pevzner et al., 2001)) to model splicing
variants for future path extraction.

Various path extraction algorithms have been
proposed to identify paths as transcripts. For ex-
ample, Trinity (Grabherr et al., 2011) enumerates
all paths in a brute-force manner to recover as
more transcript candidates as possible. The enu-
meration strategy ensures as many correct tran-
scripts as possible to be obtained but may intro-
duce a large number of artificial transcripts. Cuf-
flinks (Trapnell et al., 2012), TRIP (Mangul et al.,
2012), MLIP (Mangul et al., 2013), and Bridger
(Chang et al., 2015) aim to find the minimum
number of transcript candidates, which achieves
a high accuracy but may miss some true tran-
scripts. Many other algorithms, such as SSP
(Safikhani et al., 2013), CLASS (Song and Florea,
2013), and CLIIQ (Lin et al., 2012), adopt a linear
programming model with different objectives and

constrains to extract paths. However, the paired-
end information has not been explicitly included
in these linear programming models. More re-
cently, BinPacker (Liu et al., 2016a) extracts the
paths by solving a series of bin-packing problem,
which makes a full use of sequencing depth but
still ignores the paired-end information. rnaS-
PAdes (Bushmanova et al., 2019) and TransLiG
(Liu et al., 2019) are two state-of-the-art de novo
transcriptome assemblers, which take into consid-
eration both the sequencing depth and paired-end
information. rnaSPAdes adopts a path extension
framework to construct paths by selecting the
edge that is best supported by paired-end reads
(Prjibelski et al., 2014). TransLiG looks for paths
that best balance the weights between all the in-
coming and out-going edges. However, both rnaS-
PAdes and TransLiG recover paths tend to make
locally optimal choices, which cannot guarantee
to find a global optimal solution.

In this paper, we introduce MultiTrans, a lin-
ear programming model with more comprehen-
sive consideration (such as the sequencing depth,
the paired-end information, the assembly graph,
etc) for the transcriptome assembly problem. The
main contributions of this work include:

(i) Propose a unified path-extraction model for
transcriptome assembly problem that considers
coverage constraints on vertices and edges, the
number of paths and the paired-end information
simultaneously.

(ii) Find a global optimal solution for the path-
extraction model through a mixed integer linear
programming (MILP). MultiTrans also provides
efficient preprocessing to reduce the size of MILP
instance.

(iii) Apply the MultiTrans algorithm to the
graphs constructed by TransLiG and rnaS-
PAdes, respectively. Experimental results show
that MultiTrans outperforms rnaSPAdes and
TransLiG on both simulated and real datasets.

2 Methods

In this section, we will show how MultiTrans
takes splicing graphs (or assembly graphs) built
from reads as input and extracts paths from these
graphs to output transcripts. In the following, the
term ”splicing graph” (Liu et al., 2019) also refers
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to a connected component in the assembly graph
(Bushmanova et al., 2019).

2.1 Preliminaries

A transcript corresponds to a path in a splic-
ing graph G(V,E). The coverage of a transcript
is represented by the flow of the corresponding
path. A vertex v ∈ V usually represents contin-
uous transcript sequence without any alternative
splicing events. Two vertices are connected by an
edge if they are consecutive in one of transcripts.
The coverage of a vertex (or an edge) denotes the
total coverage of the corresponding sequence.

The transcriptome assembly problem can thus
be modeled as extracting a set of paths with re-
spect to the following objectives:

Objective (1): all the vertices and edges are
covered in at least one path.

Objective (2): all the paired-end reads are cov-
ered in at least one path.

Objective (3): the coverage of each vertex is as
close as possible to the sum of flows of paths that
pass through this vertex.

Objective (4): the number of paths is as small
as possible.

2.2 Mixed integer linear programming

MultiTrans formulates the above path extraction
problem as a mixed integer linear programming
which aims to find an optimal path set to meet
the four objectives in the above section.

Similar to Shao and Kingsford, 2017b; Zhao
et al., 2019, MultiTrans first adds a source ver-
tex and a sink vertex to the graph. MultiTrans
then connects the source vertex to vertices with-
out incoming edges and connects vertices without
outgoing edges to the sink vertex. Assume P is
the set of all paths from the source vertex to the
sink vertex in the above graph1. Note that not
all the paths in P correspond to a real transcript.

MultiTrans introduces a binary variable si to
indicate whether the ith path is selected (si = 1)
or not (si = 0). The vertices and edges in the

1Although there are no cycles in the splicing graph (Liu
et al., 2019), it is possible that a connected component in
the assembly graph (Bushmanova et al., 2019) contains cy-
cles. If there are cycles in the graph, MultiTrans considers
each path that contains at most one cycle.

path pi is denoted by V (pi) and E(pi), respec-
tively. The integer variables α(v, pi) and β(e, pi)
indicate the number of times that v appears in
V (pi) and the number of times that e appears
in E(pi), respectively. The flow on the ith path
is denoted by fi. Note the following constraints
guarantee that a path is selected (si = 1) if and
only if its flow is larger than 0 (fi > 0):

λsi ≥ fi 1 ≤ i ≤ |P |, (1)

λfi ≥ si 1 ≤ i ≤ |P |, (2)

where λ is a large positive number.
MultiTrans employs c(v) and c(e) to represent

the observed (input) coverage of vertex v and edge
e, respectively. MultiTrans adds the following
constraints to meet objective (1), i.e., all the ver-
tices and edges are covered by at least one path:

|P |∑
i=1

α(v, pi)si ≥ 1 v ∈ V, (3)

|P |∑
i=1

β(e, pi)si ≥ 1 e ∈ E. (4)

Note that each paired-end read may span mul-
tiple vertices and these vertices are expected to
appear in a same transcript. Let PE denote the
set of all paired-end constraints, where each con-
straint pe (pe ∈ PE) consists of a set of vertices
V (pe) that must occur in at least one transcript
simultaneously. Therefore, each paired-end con-
straint in objective (2) can be modelled through
the following constraints:

λ(|V (pe)| −
∑

j∈V (pe)∩V (pi)

si) ≥ µpe,i pe ∈ PE,

(5)

|V (pe)|−
∑

j∈V (pe)∩V (pi)

si ≤ λµpe,i pe ∈ PE, (6)

|P |∑
i=1

µpe,i < |P |, pe ∈ PE. (7)

Note that the binary variable µpe,i = 0 if and
only if the ith path is selected and covers all the
vertices in this paired-end constraint pe. Thus
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Figure 1: The percentages of graphs (splicing graphs or connected components in assembly graphs)
with different number of nodes, edges, and paths out of all the graphs with at least two vertices on
real human dataset (SRR5133163).

Equation (7) makes sure that the paired-end con-
straint is satisfied by at least one path.

In an ideal case, the observed coverage of each
vertex should be equal to the predicted coverage,
i.e., the sum of flows of selected paths that pass
through it. However, due to sequencing bias and
other factors, it is unrealistic to match exactly
the observed coverage and the predicted coverage
for all vertices and edges. MultiTrans introduces
a binary variable l(v) to denote the discordance
of a vertex v, i.e., the minimum value of l(v) is
1 if the ratio between the predicted coverage and
the observed coverage falls outside the interval
[(1− ε), (1+ ε)] (i.e., v is a discordant vertex with
respect to its coverage) otherwise is 0.

λl(v) ≥
|P |∑
i=1

α(v, pi)fi − (1 + ε)c(v) v ∈ V, (8)

λl(v) ≥ (1− ε)c(v)−
|P |∑
i=1

α(v, pi)fi v ∈ V. (9)

MultiTrans aims to meet four objectives simul-
taneously. The first two objectives are satisfied

through formulae (3)-(9), and the last two objec-
tives are optimized through the following objec-
tive function:

min
∑
v∈V

l(v) +
1

|P |

|P |∑
i=1

si. (10)

In the above objective function, min
∑
v∈V

l(v)

is to minimize the number of discordant vertices
with significant deviation between observed and

predicted coverage while min
|P |∑
i=1

si is to mini-

mize the number of selected paths, where |P | is
the number of possible paths (refer to Figure 3 for
a distribution of |P |). Note that 1

|P | is introduced
to make sure that the mixed linear programming
prefers solutions with the minimum number of
discordant vertices or solutions with the minimum
number of paths if there are multiple solutions
with a same minimum number of discordant ver-
tices.

2.3 Preprocessing

As shown in Figure 3, the size of input splicing
graphs (or connected components in the assembly
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Table 1: Real RNA-Seq datasets selected for comparison of different transcriptome assembly tools.

Dataset name Organism No. of reads (millions) Read length (bp) Accession No.

Human Homo sapiens 60 150 SRR5133163
Mouse Mus musculus 100 76 SRX062280
Rice Oryza Sativa 73 150 SRR12147608

graph) is usually very small, and thus an optimal
solution for the mixed integer linear programming
can be derived efficiently by software Gurobi (Op-
timization, 2014). However, there may still ex-
ist large splicing graphs which could lead to high
computational cost.

To resolve this issue, MultiTrans introduces
a restriction on the number of paths in each
splicing graph (similar to Maretty et al., 2014).
If the number of paths in a splicing graph is
larger than 500, MultiTrans iteratively removes
an edge supported by the least number of paired-
end reads (by checking the upstream and down-
stream 500bp from this edge). If multiple such
edges exist, MultiTrans removes the edge with
the smallest coverage. The iterative removal of
edges terminates when the number of paths in
the splicing graph becomes less than 500. Ac-
cording to objective (1), each edge (including the
deleted one) should be covered by at least one
path. Therefore, for each deleted edge (v, v′),
MultiTrans retrieves a path to cover (v, v′) by
concatenating a sub-path from the source vertex
to v, the edge (v, v′), and a sub-path from v′ to the
sink vertex. Note that the above two sub-paths
are constructed in a greedy way in which Multi-
Trans iteratively selects a vertex with the max-
imum coverage from v (v′) to the source (sink)
vertex, respectively.

3 Experimental Setting

3.1 Dataset Information

We benchmarked MultiTrans against other as-
semblers on the following datasets:

• Simulated datasets. There are eight sim-
ulated samples {SIM2, SIM3, . . . , SIM9}
produced by Flux Simulator (Griebel et al.,
2012). Each sample SIMi contains 1 mil-
lion 150bp paired-end reads drawn from 5,040

transcripts, and i is the ratio of the number
of expressed transcripts to genes (i.e.,, each
gene expresses i transcprits).

• Real datasets. There are four datasets
retrieved from the NCBI Sequence Read
Archive (SRA) database with accession code
SRR5133163, SRX110318, SRR12147608,
and SRX062280, respectively. A detailed de-
scription of these datasets can be found in
Table 1.

3.2 Assessment metrics

For transcriptome assembly, one of the most im-
portant indicator of assembly quality is the num-
ber of full-length reconstructed transcripts. Here,
we first aligned assembled transcript candidates
to the annotated transcripts using BLAST+ (Ca-
macho et al., 2009). We then used the analy-
sis script provided by Trinity (Grabherr et al.,
2011) to examine the percentage of the target
being aligned to by the best matching assem-
bled transcript candidates. Note that if an anno-
tated transcript matches multiple transcript can-
didates as their best hits, this annotated tran-
script is counted only once along with the tran-
script candidate that provides the highest BLAST
bit score and longest match length (Grabherr
et al., 2011). An annotated transcript is called
as a X%-reconstructed transcript if at least X%
of its length is covered by the above best match-
ing. Specially, 95%-reconstructed transcripts are
referred to as full-length reconstructed transcripts.

When the ground-truth transcripts are known
in simulated datasets, we employ the F1-sore =
2∗recall∗precision
recall+precision to measure the accuracy of re-

constructed transcripts, where recall is defined
as the fraction of full-length reconstructed tran-
scripts out of all ground-truth transcripts, and
precision is defined as the fraction of full-length
reconstructed transcripts out of all reconstructed
transcript candidates.
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When the ground-truth transcripts are not
known in real datasets, all the annotated tran-
scripts from NCBI databases are considered as
the ground truth transcripts. The annotated
transcriptome of human and mouse consists of
165,009 and 120,304 transcripts with length larger
than 200bp, respectively. However, the number of
real expressed transcripts is usually far less than
the number of annotated transcripts, and some
novel transcripts may not be included in the anno-
tation. Therefore, we employ the number of dif-
ferent percentage reconstructed transcripts when
evaluating results of real datasets.

3.3 Implementation and running envi-
ronment

We applied the MultiTrans algorithm on the as-
sembly graphs (simplified de Bruijn graphs) con-
structed by rnaSPAdes (Bushmanova et al., 2019)
as well as the splicing graphs constructed by
TransLiG (Liu et al., 2019). Note that rnaSPAdes
(version 3.13.1) and TransLiG (version 1.3) are
applied with their default parameters. All exper-
iments were run on a server with 256GB of RAM
and E5-2620V3*2 CPU processor.

Regarding the paired-end information, we used
the BWA aligner Li, 2013 to align paired-end
reads to the vertices of the assembly graphs
constructed by rnaSPAdes (Bushmanova et al.,
2019), and we inherited the default paired-end
information provided within the splicing graphs
constructed by TransLiG (Liu et al., 2019).

When running Gurobi (Optimization, 2014) for
the mixed integer linear programming, we set a
time limit of 5 minutes of each instance, i.e., the
current best solution from Gurobi will be returned
if Gurobi does not terminate in 5 minutes. If the
best solution derived from Gurobi still contains
more than 10% of discordant vertices of a splic-
ing graph, MultiTrans ignores the Gurobi solution
and outputs all paths in this splicing graph when
the total number of such paths is less than 10.
For each vertex in the splicing graph, its embed-
ded read number is defined as the multiplication
of its length and coverage divided by the average
read length. MultiTrans filters isolated vertices
in the splicing graph if its length is less than 200
or its embedded read number is less than 10% of
the average value across all splicing graphs.

4 Results

4.1 Evaluation on simulated datasets
of different complexities

We tested MultiTrans, rnaSPAdes and TransLiG
on eight simulated datasets with different com-
plexities. The number of transcripts expressed by
each gene in these eight datasets is from 2 to 9,
respectively. Table 2 summarizes F1-score, preci-
sion and recall of assemblers on these simulated
datasets.

As shown in Table 2, with the same input
graphs, MultiTrans obtained higher F1-score and
precision than rnaSPAdes and TransLiG on all
simulated datasets. For example, the average pre-
cision achieved by MultiTrans based on assem-
bly graphs was 0.434, which increased the aver-
age precision of rnaSPAdes (0.283) with 53.4%.
Although TransLiG achieved higher recall than
MultiTrans on datasets SIM2 and SIM3, Multi-
Trans performed better recall than TransLiG on
other six simulated datasets. Besides, MultiTrans
produced a higher average recall than TransLiG.
The improvement made by MultiTrans over rnaS-
PAdes or TransLiG became more significant when
the number of expressed transcripts by each gene
got larger. For example, MultiTrans improved
the F1-socres of rnaSPAdes and TransLiG on
dataset SIM2 with 7.0% and 3.0%, respectively,
while it increased the F1-scores of rnaSPAdes
and TransLiG on dataset SIM9 with 50.3% and
11.8%, respectively. When more transcripts by
each gene are expressed, the graphs are expected
to get more complicated, and thus MultiTrans
benefits from its application of the mixed inte-
ger linear programming to derive more accurate
paths on non-trivial graphs (splicing graphs with
at least two vertices or connected components
with at least two vertices in assembly graphs).

Figure 2 indicates that the performance of Mul-
tiTrans is related to the average numbers of ver-
tices, edges and paths in non-trivial graphs. In
most cases, MultiTrans based on assembly graphs
(or splicing graphs) achieved a higher improve-
ment over rnaSPAdes (or TansLiG) on the dataset
with complicated non-trivial graphs.
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Table 2: Benchmarking of rnaSPAdes, TransLiG, and MultiTrans on small simulated datasets

Dataset Parameter
rnaSPAdes MultiTrans TransLiG MultiTrans

(assembly graph) (assembly graph) (splicing graph) (splicing graph)

SIM2

F1-score 0.214 0.229 0.233 0.240

precision 0.190 0.215 0.202 0.220

recall 0.246 0.246 0.275 0.264

SIM3

F1-score 0.222 0.252 0.243 0.258

precision 0.231 0.298 0.240 0.273

recall 0.213 0.2175 0.247 0.244

SIM4

F1-score 0.274 0.320 0.300 0.329

precision 0.346 0.492 0.331 0.384

recall 0.227 0.238 0.274 0.288

SIM5

F1-socre 0.211 0.248 0.245 0.272

precision 0.282 0.412 0.286 0.338

recall 0.168 0.177 0.214 0.228

SIM6

F1-score 0.205 0.248 0.249 0.284

precision 0.287 0.450 0.301 0.358

recall 0.159 0.171 0.212 0.236

SIM7

F1-score 0.221 0.285 0.268 0.311

precision 0.344 0.566 0.341 0.404

recall 0.163 0.190 0.220 0.253

SIM8

F1-score 0.169 0.213 0.217 0.248

precision 0.264 0.442 0.288 0.344

recall 0.124 0.140 0.174 0.194

SIM9

F1-score 0.199 0.299 0.246 0.275

precision 0.322 0.600 0.327 0.389

recall 0.143 0.199 0.197 0.213

4.2 Evaluation on real datasets

We benchmarked rnaSPAdes, TransLiG, and
MultiTrans on three real publicly available RNA-
seq datasets: Human dataset (SRR5133163),
Mouse dataset (SRX0662280), and Rice dataset
(SRR12147608). The numbers of reconstructed
transcripts and assembled transcript candidates
are presented in Table 3-5.

Table 3 shows the reconstructed transcripts re-
ported by different assemblers on Human dataset
(SRR5133163). Taking the same input graphs,
MultiTrans recovered more reconstructed tran-
scripts than rnaSPAdes and TransLiG. For ex-
ample, MultiTrans based on assembly graphs
produced 1,446 more full-length (95%) recon-
structed transcripts than rnaSPAdes, and Mul-
tiTrans based on splicing graphs recovered 88

more full-length reconstructed transcripts than
TransLiG. Note that MultiTrans made a more sig-
nificant improvement over rnaSPAdes than Tran-
LiG. This is consistent with the observation that
rnaSPAdes outputs more non-trivial graphs than
TransLiG (refer to Table 6), which offers more
chances for MultiTrans to use the mixed inte-
ger linear programming to recover transcripts.
While TransLiG already used both sequencing
depth and paired-end information in its path ex-
traction, MultiTrans still obtained better recon-
structed transcripts. The number of transcript
candidates was largely reduced, as MultiTrans
took into consideration of the number of paths in
the mixed integer linear programming in addition
to sequencing depth and paired-end information.

Table 4 presents the resulting reconstructed
transcripts on the Mouse dataset (SRX0662280).
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Figure 2: Correlation between the complexities of graphs and the relative improvements of F1-scores
of MultiTrans over rnaSPAdes and TransLiG on simulated datasets. The complexities of graphs
(assembly graphs and splcing graphs) are measured by the average numbers of vertices, edge, and
paths in non-trivial graphs, where non-trivial graphs are splicing graphs (or connected components
in assembly graphs) with at least two vertices.

Similar to the previous results, MultiTrans
achieved better performance compared to rnaS-
PAdes and TransLiG. For example, MultiTrans
based on assembly graphs obtained 334 more
full-length reconstructed transcripts than rnaS-
PAdes, and MultiTrans based on splicing graphs
reconstructed 202 more full-length reconstructed
transcripts than TransLiG. Interestingly, the im-
provement by MultiTrans over rnaSPAdes on real
mouse dataset was lower than it on the real hu-
man dataset. This is consistent with the ob-
servation that the average numbers of vertices,
edges and paths of non-trivial graphs constructed
by rnaSPAdes on the real mouse dataset are
smaller than that of on real human dataset, re-
spectively (Table 6). Although MultiTrans based
on splicing graphs achieved a higher improve-
ment in recovering full-length reconstructed tran-
scripts on the real mouse dataset than on the

real human dataset, its performance on reduc-
ing transcript candidates on real mouse dataset
was not as good as on the real human dataset.
MutiTrans obtained 2.8% more full-length re-
constructed transcripts and 30.0% fewer candi-
dates than TransLiG on the real mouse dataset
while it produced 1% more full-length recon-
structed transcripts and 39.0% fewer candidates
than TransLiG on the real human dataset. There-
fore, we think MultiTrans achieves a higher im-
provement over TransLiG on the real human
dataset than on the real mouse dataset. Note
that this conclusion is also consistent with the
observation that the non-trivial graph on the real
human dataset is more complicated than it on the
real mouse dataset.

Table 5 demonstrates the assembling results
on the Rice dataset (SRR12147608). When tak-
ing assembly graphs from rnaSPAdes as input,
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Table 3: Benchmarking of rnaSPAdes, TransLiG, and MultiTrans on Human dataset (SRR5133163)

Parameter
rnaSPAdes MultiTrans TransLiG MultiTrans

(Assembly graph) (Assembly graph) (Splicing graph) (Splicing graph)

100%-reconstructed 7,381 8,616 7,457 7,661

95%-reconstructed 8,886 10,332 9,030 9,118

90%-reconstructed 9,840 11,499 10,157 10,215

85%-reconstructed 10,742 12,556 11,145 11,196

80%-reconstructed 11,555 13,470 12,119 12,214

candidates 182,400 92,916 101,478 61,875

Table 4: Benchmarking of rnaSPAdes, TransLiG, and MultiTrans on Mouse dataset (SRX0662280)

Parameter
rnaSPAdes MultiTrans TransLiG MultiTrans

(Assembly graph) (Assembly graph) (Splicing graph) (Splicing graph)

100%-reconstructed 6,627 6,930 6,230 6,442

95%-reconstructed 7,609 7,943 7,266 7,468

90%-reconstructed 8,263 8,633 7,995 8,177

85%-reconstructed 8,807 9,251 8,555 8,773

80%-reconstructed 9,324 9,883 9,110 9,311

candidates 81,241 61,235 30,941 21,648

MultiTrans reported more reconstructed tran-
scripts and fewer candidates, and thus outper-
formed rnaSPAdes. MultiTrans based on splic-
ing graphs reported 16.6% fewer candidates than
TransLiG while maintaining a similar number
of reconstructed transcripts as TransLiG (within
1.3% difference), which indicates the superior per-
formance of MultiTrans over TransLiG in this
dataset.

As shown in above experiments, MultiTrans
can be successfully applied to different graphs (as-
sembly graphs by rnaSPAdes and splicing graphs
by TransLiG) to increase the number of recon-
structed transcripts while reducing the number
of transcript candidates. Besides, MultiTrans al-
gorithm is very quick in most cases. For example,
it only costs 30 minutes and 287Mb when takes
the splicing graphs constructed by TransLiG on
real human dataset (SRR5133163) as input.

5 Conclusion and Discussion

In this paper, we introduced an efficient transcrip-
tome assembly algorithm, MultiTrans, which for-
mulated the transcripts assembly problem into a
mixed integer linear programming. We applied

the MultiTrans algorithm to the assembly graphs
constructed by rnaSPAdes and splicing graphs
constructed by TransLiG, respectively. Experi-
ments on both simulated and real datasets show
that MultiTrans significantly improves the perfor-
mances of rnaSPAdes and TransLiG when using
the same input graphs. While rnaSPAdes and
TransLiG recover paths by iteratively in a local
or greedy fashion, MultiTrans seeks a global opti-
mal solution via a mixed integer linear program-
ming that takes into consideration of the number
of paths, sequencing depth, and paired-end in-
formation, simultaneously. We believe that Mul-
tiTrans algorithm also applies to reference-based
transcriptome assembly problem and may be ex-
tended to handle metagenomics assembly in the
future.
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Table 5: Benchmarking of rnaSPAdes, TransLiG, and MultiTrans on Rice dataset (SRR12147608)

Parameter
rnaSPAdes MultiTrans TransLiG MultiTrans

(Assembly graph) (Assembly graph) (Splicing graph) (Splicing graph)

100%-reconstructed 10,379 11,086 9,645 9,652

95%-reconstructed 12,483 13,195 11,699 11,649

90%-reconstructed 13,696 14,329 12,893 12,819

85%-reconstructed 14,584 15,141 13,853 13,689

80%-reconstructed 15,415 15,849 14,750 14,556

candidates 64,853 47,051 60,818 50,698

Table 6: Information of assembly graphs and splicing graphs on Human dataset and Mouse dataset.
The average numbers of vertices, edges and paths correspond to the values in non-trivial graphs.

Parameter
Human dataset Mouse dataset

assembly graph splicing graph assembly graph splicing graph

Num of non-trivial graphs 25,162 11,085 21,189 4,474

average number of vertices 4.533 6.423 4.163 4.869

average number of edges 3.842 7.602 3.148 5.360

average number of paths 6.888 16.504 4.041 6.751
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